Phase Transition in the Number Partitioning
Problem

Leena Salmela
T-79.7003 Research Course in Theorethical Computer Science

October 19, 2007

Abstract

Number partitioning is an NP-hard problem with applications for
example in task scheduling. Two heuristic algorithms and their exact
complete versions are presented. The random version of the problem
has a phase transition in average complexity. This phase transition
coincides with the phase transition in the probability of perfect par-
titions. This presentation is largely based on the review article by
Mertens [4]. More details on the algorithms are given in [3] and the
phase transition is analyzed more rigorously in [2].

1 Introduction

The number partitioning problem (NPP) is defined as follows. Given a list
ai,as,...,ay of N integers, find a partition A that minimizes the discrep-
ancy

E(A) = Zai — Zai
i€A igA
If the sum)" a; is even, a partition A is called perfect if E(A) = 0 and if
the sum Y a; is odd, a partition A is perfect if E(A) = 1. Thus a perfect
partition is guaranteed to be an optimum partition. NPP has been proved
to be NP-complete.

If the input numbers a; are bounded by a constant A, i.e. a; < A, then the
discrepancy can take at most VA different values. A dynamic programming
algorithm [1] exploring this search space in O(N2A) time works as follows.
The algorithm builds an (N x N A) table T'. An entry (i,) tells if a partition
of size j can be constructed from the ¢ first elements in the list. The first
row ¢ = 1 is initialized as follows:

.) true ifj=0o0ra;=j
T, gl = { false otherwise

The subsequent rows can then be filled with the following recursion:

T, j] = { true if T'[i — 1,j] = true or T[i — 1,j — a;] = true
’ false otherwise

The optimal partition then corresponds to a cell T[i,j] = true where j is

closest to %va a;.

It would thus appear that a polynomial time algorithm exists for the NPP.
However, any concise coding of the input numbers takes at least N log A bits
space. Because A is not bounded by any polynomial function of log A, the
runtime of the algorithm is still exponential in the length of the input. This
feature of NPP is called pseudo polynomiality. Also the NP-completeness of
NPP requires the input numbers to be exponentially large in N.

Many analytical results of NPP have been proven for the real-valued
version of the problem. In this case the input numbers are real numbers in the
interval [0, 1]. Besides the real-valued version of NPP there are several other
interesting variations of the problem. In multiway NPP the numbers are
partitioned into more than two subsets and in the balanced NPP there is an
additional contraint that the produced sets must have the same cardinality.

A surprising feature of NPP is the poor quality of heuristic algorithms.
It has been proven that the average discrepancy of optimum partitions is
O(V'N - 27N) if the input numbers are independently and identically dis-
tributed random real numbers from the interval [0,1]. However the best
heuristic algorithm for the real-valued version of the problem produces par-
titions with average discrepancies O(N -8 N) where « is a constant.

2 Algorithms

2.1 Greedy Algorithm

The greedy algorithm attempts to keep the discrepancy as small as possible
with every decision it makes. The algorithm chooses the largest unassigned
number and assigns it to the set with the smallest sum. This is repeated
until all numbers have been assigned to a set. For random real valued inputs
the greedy algorithm yields average discrepancies O(1/N) which is quite bad
compared to the average discrepancies of optimum partitions. The time com-
plexity of the greedy algorithm is dominated by the sorting of the numbers
so it is O(N log N).

2.2 Differencing Algorithm

The differencing algorithm by Karmarkar and Karp attempts to reduce the
length of the list of numbers in each iteration. This algorithm chooses two
largest numbers of the instance and replaces them by their absolute differ-
ence. This corresponds to commiting to placing the two numbers in different

sets but leaving the final decision of which number goes where open. The al-
gorithm continues to replace the largest numbers by their absolute difference
until there is only one number left. This is the discrepancy of the partition.
Note that some additional book keeping is needed to figure out the actual
partition in the end of the algorithm.

The differencing algorithm produces average discrepancies O(N @108 NV)
with o = 0.72 for the real-valued problem with random numbers. This
is somewhat better than the greedy algorithm but still quite far from the
optimum. The running time of the differencing algorithm is dominated by
sorting the initial numbers and thus the time complexity of the algorithm is
O(Nlog N).

2.3 Complete Algorithms

Both of the above algorithms can be easily extended to algorithms for finding
the exact optimal partition. In each iteration of the greedy algorithm we
make a decision to put the largest remaining number to the set with the
smallest sum. Obviously the only other option is to put the largest number
to the set with the larger sum. The complete greedy algorithm explores all
the 2% possible partitions in this fashion. Thus the worst-case running time
of the algorithm is exponential.

The differencing algorithm can be extended to a complete algorithm in a
very similar fashion. Now in each iteration the algorithm decides to put the
two largest numbers in different sets which corresponds to replacing them
with their absolute difference. The other option is to put the two numbers in
the same subset. This corresponds to replacing the numbers by their sum.
Again this results in a complete algorithm that explores all the possible
partitions.

The search of the complete algorithms can be pruned in several cases.
For the differencing method the following pruning rules can be used:

1. It can be proven that the differencing heuristic finds the optimal solu-
tion when there are less than five numbers left. Thus in this case we
can just apply the differencing heuristic.

2. If the largest number is larger or equal to the sum of the rest of the
numbers, it is obvious that the best we can do is to place the largest
number in one set and all the other numbers in the other set.

3. If we have found a perfect partition, we know that it is an optimal
partition. Thus we do not need to continue the search.

Figure 1 shows the search space of the complete differencing method with
input list 8,7,6,5, 4.

87654
4 numbers left K\ Sum rule

—

1141 2154

() (D ()6 () (18 @ (3) (0 (18) () () (2

Figure 1: The search tree of the complete differencing algorithm. The pink
nodes are explored by the algorithm using pruning rules, the green nodes
are explored after applying a pruning rule and the blue node is the optimal
solution.

3 Phase Transition

A random instance of the number partitioning problem consists of N num-
bers a; which are chosen independently and uniformly at random from an
integer interval [0, A). If we define A = 2%V all known exact algorithms have
an exponential worst-case running time. However, the typical complexity of
the problem depends on k.

In practise, random (log A)-bit integers are generated when we are look-
ing for the phase transition in average complexity. In this case the parameter
k = log A/N so k decreases as N increases. Then the algorithm is run for
various N and the results are plotted on a graph. Figure 2 shows such a
graph for instances with random 20-bit integers. As can be seen, the run-
ning time increases exponentially until N = 24 after which it decreases. In
fact the complete differencing method has linear running time for large N.
This can only mean that the method finds a perfect partition in the first try
and because of the pruning, stops after that.

Figure 2 also shows the probability of an instance to have a perfect par-
tition. It can be seen that the peak in the running time coincides with the
sudden rise in the probability of perfect partition. The probability can be an-
alytically analyzed rigorously [2] but we will show here an easier and shorter
analysis which is somewhat sloppy [4].

A partition A can be coded with binary variables s; = +1 by defining
that s; = +1 if a; € A and s; = —1 otherwise. The discrepancy of the
parition can then be defined as E = |D(s)| where

N
D(s) = Zaisi. (1)
i=1

A < 1.02
: 1 e
4] _E _:é
R los 2
b N =
8 O
2 5 o~0 complete differencing| 79-6 @
3 | —
a0 g -0 complete greedy |8
: —N Jo4~=
I] 5

2 i
10°F : s]
: 0.2 @

101... L..'.|..‘m‘H‘m...|....|....|...mmm..|....|.mm§00
0 10 20 30 40 50 S(IJ\I 70 80 90 100 110 120 ™

Figure 2: Phase transition in average running time for 20-bit integers. The
dashed line shows the probability of a perfect partition. (From Mertens [4].)

If we consider a random walker in one dimension who takes steps to the
right (s; = +1) or left (s; = —1) with random step sizes (a;) then we can
interpret D as the distance to the origin at the end of the walk. Then the
average number of walks ending at D is

N
o) =3 (5 (0L us)) ®
{51} i=1

where the averaging is over the random numbers {a;}.
If we consider a fixed walk {s;} then for large N the distance to the
origin, Z;-V:l a;sj, is Gaussian with mean

(D) = {a) M 3)
where M = 3", s; and variance
(D?) = (D) = M*(a®) — (M) = M*((a®) = @)") (4)

Next we need to calculate averages of M and M? when averaging over
the random walk {s;}. For large N we get

and

Now we can average (D) and (D?) over the random walk {s;}:

(D)} = [M](a) =0 (7)

(9] -0 = o] o) = a2 8

Substituting the mean (7) and variance (8) to the probability function of
the Gaussian distribution, the probability of ending the walk at distance D
reads

and

1 D?
D)= ——exp| ————— |- 9
p(D) V271N (a?) p(2N <a2>> 9)
Now we have to note that the walk can only end at even numbers if the
sum) a; is even and at odd numbers otherwise. Thus the average number
of walks ending at D is

QD) =22 (D)—Le Db (10)
T aeN @ TN (e)

The second moment of a variable ¢ with uniform discrete distribution is
1

(a?) = 327N (1 - 0@). (11)

Substituting this to Equation 10 and solving for log, ©2(0) we get

log, 2(0) = N(k¢e — k) (12)
with 1 N)
Og2 s
=1— - — . 1
re=1= "N ~aN e (6) (13)

From Equation 12 we see that when x < k. there are exponentially many
perfect partitions and when x > k. the probability of a perfect partition is
exponentially small. Thus the problem space of NPP is divided into two
regions: The easy phase with k < k. where perfect partitions are abundant
and heuristic algorithms often find a perfect partition in polynomial time
and the hard phase with x > k. where perfect partitions are very rare and
heuristic algorithms are no better than blind search.

References

[1] M.R. Garey and D.S. Johnson: Computers and Intractability. A Guide
to the Theory of NP-Completeness. Freeman, San Fransisco (1979).

[2] Mertens, S.: Phase transition in the number partitioning problem. Phys.
Rev. Lett. 81, 4281 (1998).

[3] Mertens, S.: A complete anytime algorithm for balanced number parti-
tioning. Preprint arxiv.org/abs/cs/9903011 (1999)

[4] Mertens, S.: The easiest hard problem: Number partitioning. in: Per-
cus, A.G., Istrate, G., Moore, C. (eds.), Computational complexity and
statistical physics, Oxford University Press (2006), pp. 125-139

