
Phase Transition in the Number PartitioningProblemLeena SalmelaT-79.7003 Researh Course in Theorethial Computer SieneOtober 19, 2007AbstratNumber partitioning is an NP-hard problem with appliations forexample in task sheduling. Two heuristi algorithms and their exatomplete versions are presented. The random version of the problemhas a phase transition in average omplexity. This phase transitionoinides with the phase transition in the probability of perfet par-titions. This presentation is largely based on the review artile byMertens [4℄. More details on the algorithms are given in [3℄ and thephase transition is analyzed more rigorously in [2℄.1 IntrodutionThe number partitioning problem (NPP) is de�ned as follows. Given a list
a1, a2, . . . , aN of N integers, �nd a partition A that minimizes the disrep-any
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ai is even, a partition A is alled perfet if E(A) = 0 and ifthe sum ∑

ai is odd, a partition A is perfet if E(A) = 1. Thus a perfetpartition is guaranteed to be an optimum partition. NPP has been provedto be NP-omplete.If the input numbers ai are bounded by a onstant A, i.e. ai < A, then thedisrepany an take at most NA di�erent values. A dynami programmingalgorithm [1℄ exploring this searh spae in O(N2A) time works as follows.The algorithm builds an (N ×NA) table T . An entry (i, j) tells if a partitionof size j an be onstruted from the i �rst elements in the list. The �rstrow i = 1 is initialized as follows:
T [1, j] =

{

true if j = 0 or a1 = j
false otherwise1



The subsequent rows an then be �lled with the following reursion:
T [i, j] =

{

true if T [i − 1, j] = true or T [i − 1, j − ai] = true
false otherwiseThe optimal partition then orresponds to a ell T [i, j] = true where j islosest to 1

2

∑N
i ai.It would thus appear that a polynomial time algorithm exists for the NPP.However, any onise oding of the input numbers takes at least N log A bitsspae. Beause A is not bounded by any polynomial funtion of log A, theruntime of the algorithm is still exponential in the length of the input. Thisfeature of NPP is alled pseudo polynomiality. Also the NP-ompleteness ofNPP requires the input numbers to be exponentially large in N .Many analytial results of NPP have been proven for the real-valuedversion of the problem. In this ase the input numbers are real numbers in theinterval [0, 1]. Besides the real-valued version of NPP there are several otherinteresting variations of the problem. In multiway NPP the numbers arepartitioned into more than two subsets and in the balaned NPP there is anadditional ontraint that the produed sets must have the same ardinality.A surprising feature of NPP is the poor quality of heuristi algorithms.It has been proven that the average disrepany of optimum partitions is

O(
√

N · 2−N ) if the input numbers are independently and identially dis-tributed random real numbers from the interval [0, 1]. However the bestheuristi algorithm for the real-valued version of the problem produes par-titions with average disrepanies O(N−α log N ), where α is a onstant.2 Algorithms2.1 Greedy AlgorithmThe greedy algorithm attempts to keep the disrepany as small as possiblewith every deision it makes. The algorithm hooses the largest unassignednumber and assigns it to the set with the smallest sum. This is repeateduntil all numbers have been assigned to a set. For random real valued inputsthe greedy algorithm yields average disrepanies O(1/N) whih is quite badompared to the average disrepanies of optimum partitions. The time om-plexity of the greedy algorithm is dominated by the sorting of the numbersso it is O(N log N).2.2 Di�erening AlgorithmThe di�erening algorithm by Karmarkar and Karp attempts to redue thelength of the list of numbers in eah iteration. This algorithm hooses twolargest numbers of the instane and replaes them by their absolute di�er-ene. This orresponds to ommiting to plaing the two numbers in di�erent2



sets but leaving the �nal deision of whih number goes where open. The al-gorithm ontinues to replae the largest numbers by their absolute di�ereneuntil there is only one number left. This is the disrepany of the partition.Note that some additional book keeping is needed to �gure out the atualpartition in the end of the algorithm.The di�erening algorithm produes average disrepanies O(N−α log N )with α = 0.72 for the real-valued problem with random numbers. Thisis somewhat better than the greedy algorithm but still quite far from theoptimum. The running time of the di�erening algorithm is dominated bysorting the initial numbers and thus the time omplexity of the algorithm is
O(N log N).2.3 Complete AlgorithmsBoth of the above algorithms an be easily extended to algorithms for �ndingthe exat optimal partition. In eah iteration of the greedy algorithm wemake a deision to put the largest remaining number to the set with thesmallest sum. Obviously the only other option is to put the largest numberto the set with the larger sum. The omplete greedy algorithm explores allthe 2N possible partitions in this fashion. Thus the worst-ase running timeof the algorithm is exponential.The di�erening algorithm an be extended to a omplete algorithm in avery similar fashion. Now in eah iteration the algorithm deides to put thetwo largest numbers in di�erent sets whih orresponds to replaing themwith their absolute di�erene. The other option is to put the two numbers inthe same subset. This orresponds to replaing the numbers by their sum.Again this results in a omplete algorithm that explores all the possiblepartitions.The searh of the omplete algorithms an be pruned in several ases.For the di�erening method the following pruning rules an be used:1. It an be proven that the di�erening heuristi �nds the optimal solu-tion when there are less than �ve numbers left. Thus in this ase wean just apply the di�erening heuristi.2. If the largest number is larger or equal to the sum of the rest of thenumbers, it is obvious that the best we an do is to plae the largestnumber in one set and all the other numbers in the other set.3. If we have found a perfet partition, we know that it is an optimalpartition. Thus we do not need to ontinue the searh.Figure 1 shows the searh spae of the omplete di�erening method withinput list 8, 7, 6, 5, 4. 3



8 7 6 5 4

6 5 4 1 15 6 5 4

4 1 1 11 4 1 9 5 4 21 5 4

5 1 7 13 1 15 1 4 4 14 4 16 4 26 4

2 4 4 66 148 16 0 8 10 18 12 20 22 30

Sum rule4 numbers left

Figure 1: The searh tree of the omplete di�erening algorithm. The pinknodes are explored by the algorithm using pruning rules, the green nodesare explored after applying a pruning rule and the blue node is the optimalsolution.3 Phase TransitionA random instane of the number partitioning problem onsists of N num-bers ai whih are hosen independently and uniformly at random from aninteger interval [0, A). If we de�ne A = 2κN all known exat algorithms havean exponential worst-ase running time. However, the typial omplexity ofthe problem depends on κ.In pratise, random (log A)-bit integers are generated when we are look-ing for the phase transition in average omplexity. In this ase the parameter
κ = log A/N so κ dereases as N inreases. Then the algorithm is run forvarious N and the results are plotted on a graph. Figure 2 shows suh agraph for instanes with random 20-bit integers. As an be seen, the run-ning time inreases exponentially until N = 24 after whih it dereases. Infat the omplete di�erening method has linear running time for large N .This an only mean that the method �nds a perfet partition in the �rst tryand beause of the pruning, stops after that.Figure 2 also shows the probability of an instane to have a perfet par-tition. It an be seen that the peak in the running time oinides with thesudden rise in the probability of perfet partition. The probability an be an-alytially analyzed rigorously [2℄ but we will show here an easier and shorteranalysis whih is somewhat sloppy [4℄.A partition A an be oded with binary variables si = ±1 by de�ningthat si = +1 if ai ∈ A and si = −1 otherwise. The disrepany of theparition an then be de�ned as E = |D(s)| where

D(s) =
N
∑

i=1

aisi. (1)4



Figure 2: Phase transition in average running time for 20-bit integers. Thedashed line shows the probability of a perfet partition. (From Mertens [4℄.)If we onsider a random walker in one dimension who takes steps to theright (si = +1) or left (si = −1) with random step sizes (ai) then we aninterpret D as the distane to the origin at the end of the walk. Then theaverage number of walks ending at D is
Ω(D) =

∑

{si}

〈

δ
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)〉 (2)where the averaging is over the random numbers {ai}.If we onsider a �xed walk {si} then for large N the distane to theorigin, ∑N
j=1 ajsj, is Gaussian with mean
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− 〈a〉2) (4)Next we need to alulate averages of M and M2 when averaging overthe random walk {si}. For large N we get
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Now we an average 〈D〉 and 〈D2
〉 over the random walk {si}:

[〈D〉] = [M ] 〈a〉 = 0 (7)and
[〈

D2
〉]

− [〈D〉]2 =
[

M2
] 〈

a2
〉

= N
〈

a2
〉 (8)Substituting the mean (7) and variane (8) to the probability funtion ofthe Gaussian distribution, the probability of ending the walk at distane Dreads
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)

. (9)Now we have to note that the walk an only end at even numbers if thesum ∑

ai is even and at odd numbers otherwise. Thus the average numberof walks ending at D is
Ω(D) = 2N2p(D) =
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. (10)The seond moment of a variable a with uniform disrete distribution is
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22κN (1 − O(2−κN )). (11)Substituting this to Equation 10 and solving for log2 Ω(0) we get

log2 Ω(0) = N(κc − κ) (12)with
κc = 1 − log2 N
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)

. (13)From Equation 12 we see that when κ < κc there are exponentially manyperfet partitions and when κ > κc the probability of a perfet partition isexponentially small. Thus the problem spae of NPP is divided into tworegions: The easy phase with κ < κc where perfet partitions are abundantand heuristi algorithms often �nd a perfet partition in polynomial timeand the hard phase with κ > κc where perfet partitions are very rare andheuristi algorithms are no better than blind searh.Referenes[1℄ M.R. Garey and D.S. Johnson: Computers and Intratability. A Guideto the Theory of NP-Completeness. Freeman, San Fransiso (1979).[2℄ Mertens, S.: Phase transition in the number partitioning problem. Phys.Rev. Lett. 81, 4281 (1998). 6
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