
Phase Transition in the Number PartitioningProblemLeena SalmelaT-79.7003 Resear
h Course in Theorethi
al Computer S
ien
eO
tober 19, 2007Abstra
tNumber partitioning is an NP-hard problem with appli
ations forexample in task s
heduling. Two heuristi
 algorithms and their exa
t
omplete versions are presented. The random version of the problemhas a phase transition in average 
omplexity. This phase transition
oin
ides with the phase transition in the probability of perfe
t par-titions. This presentation is largely based on the review arti
le byMertens [4℄. More details on the algorithms are given in [3℄ and thephase transition is analyzed more rigorously in [2℄.1 Introdu
tionThe number partitioning problem (NPP) is de�ned as follows. Given a list
a1, a2, . . . , aN of N integers, �nd a partition A that minimizes the dis
rep-an
y
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ai is even, a partition A is 
alled perfe
t if E(A) = 0 and ifthe sum ∑

ai is odd, a partition A is perfe
t if E(A) = 1. Thus a perfe
tpartition is guaranteed to be an optimum partition. NPP has been provedto be NP-
omplete.If the input numbers ai are bounded by a 
onstant A, i.e. ai < A, then thedis
repan
y 
an take at most NA di�erent values. A dynami
 programmingalgorithm [1℄ exploring this sear
h spa
e in O(N2A) time works as follows.The algorithm builds an (N ×NA) table T . An entry (i, j) tells if a partitionof size j 
an be 
onstru
ted from the i �rst elements in the list. The �rstrow i = 1 is initialized as follows:
T [1, j] =

{

true if j = 0 or a1 = j
false otherwise1



The subsequent rows 
an then be �lled with the following re
ursion:
T [i, j] =

{

true if T [i − 1, j] = true or T [i − 1, j − ai] = true
false otherwiseThe optimal partition then 
orresponds to a 
ell T [i, j] = true where j is
losest to 1

2

∑N
i ai.It would thus appear that a polynomial time algorithm exists for the NPP.However, any 
on
ise 
oding of the input numbers takes at least N log A bitsspa
e. Be
ause A is not bounded by any polynomial fun
tion of log A, theruntime of the algorithm is still exponential in the length of the input. Thisfeature of NPP is 
alled pseudo polynomiality. Also the NP-
ompleteness ofNPP requires the input numbers to be exponentially large in N .Many analyti
al results of NPP have been proven for the real-valuedversion of the problem. In this 
ase the input numbers are real numbers in theinterval [0, 1]. Besides the real-valued version of NPP there are several otherinteresting variations of the problem. In multiway NPP the numbers arepartitioned into more than two subsets and in the balan
ed NPP there is anadditional 
ontraint that the produ
ed sets must have the same 
ardinality.A surprising feature of NPP is the poor quality of heuristi
 algorithms.It has been proven that the average dis
repan
y of optimum partitions is

O(
√

N · 2−N ) if the input numbers are independently and identi
ally dis-tributed random real numbers from the interval [0, 1]. However the bestheuristi
 algorithm for the real-valued version of the problem produ
es par-titions with average dis
repan
ies O(N−α log N ), where α is a 
onstant.2 Algorithms2.1 Greedy AlgorithmThe greedy algorithm attempts to keep the dis
repan
y as small as possiblewith every de
ision it makes. The algorithm 
hooses the largest unassignednumber and assigns it to the set with the smallest sum. This is repeateduntil all numbers have been assigned to a set. For random real valued inputsthe greedy algorithm yields average dis
repan
ies O(1/N) whi
h is quite bad
ompared to the average dis
repan
ies of optimum partitions. The time 
om-plexity of the greedy algorithm is dominated by the sorting of the numbersso it is O(N log N).2.2 Di�eren
ing AlgorithmThe di�eren
ing algorithm by Karmarkar and Karp attempts to redu
e thelength of the list of numbers in ea
h iteration. This algorithm 
hooses twolargest numbers of the instan
e and repla
es them by their absolute di�er-en
e. This 
orresponds to 
ommiting to pla
ing the two numbers in di�erent2



sets but leaving the �nal de
ision of whi
h number goes where open. The al-gorithm 
ontinues to repla
e the largest numbers by their absolute di�eren
euntil there is only one number left. This is the dis
repan
y of the partition.Note that some additional book keeping is needed to �gure out the a
tualpartition in the end of the algorithm.The di�eren
ing algorithm produ
es average dis
repan
ies O(N−α log N )with α = 0.72 for the real-valued problem with random numbers. Thisis somewhat better than the greedy algorithm but still quite far from theoptimum. The running time of the di�eren
ing algorithm is dominated bysorting the initial numbers and thus the time 
omplexity of the algorithm is
O(N log N).2.3 Complete AlgorithmsBoth of the above algorithms 
an be easily extended to algorithms for �ndingthe exa
t optimal partition. In ea
h iteration of the greedy algorithm wemake a de
ision to put the largest remaining number to the set with thesmallest sum. Obviously the only other option is to put the largest numberto the set with the larger sum. The 
omplete greedy algorithm explores allthe 2N possible partitions in this fashion. Thus the worst-
ase running timeof the algorithm is exponential.The di�eren
ing algorithm 
an be extended to a 
omplete algorithm in avery similar fashion. Now in ea
h iteration the algorithm de
ides to put thetwo largest numbers in di�erent sets whi
h 
orresponds to repla
ing themwith their absolute di�eren
e. The other option is to put the two numbers inthe same subset. This 
orresponds to repla
ing the numbers by their sum.Again this results in a 
omplete algorithm that explores all the possiblepartitions.The sear
h of the 
omplete algorithms 
an be pruned in several 
ases.For the di�eren
ing method the following pruning rules 
an be used:1. It 
an be proven that the di�eren
ing heuristi
 �nds the optimal solu-tion when there are less than �ve numbers left. Thus in this 
ase we
an just apply the di�eren
ing heuristi
.2. If the largest number is larger or equal to the sum of the rest of thenumbers, it is obvious that the best we 
an do is to pla
e the largestnumber in one set and all the other numbers in the other set.3. If we have found a perfe
t partition, we know that it is an optimalpartition. Thus we do not need to 
ontinue the sear
h.Figure 1 shows the sear
h spa
e of the 
omplete di�eren
ing method withinput list 8, 7, 6, 5, 4. 3



8 7 6 5 4

6 5 4 1 15 6 5 4

4 1 1 11 4 1 9 5 4 21 5 4

5 1 7 13 1 15 1 4 4 14 4 16 4 26 4

2 4 4 66 148 16 0 8 10 18 12 20 22 30

Sum rule4 numbers left

Figure 1: The sear
h tree of the 
omplete di�eren
ing algorithm. The pinknodes are explored by the algorithm using pruning rules, the green nodesare explored after applying a pruning rule and the blue node is the optimalsolution.3 Phase TransitionA random instan
e of the number partitioning problem 
onsists of N num-bers ai whi
h are 
hosen independently and uniformly at random from aninteger interval [0, A). If we de�ne A = 2κN all known exa
t algorithms havean exponential worst-
ase running time. However, the typi
al 
omplexity ofthe problem depends on κ.In pra
tise, random (log A)-bit integers are generated when we are look-ing for the phase transition in average 
omplexity. In this 
ase the parameter
κ = log A/N so κ de
reases as N in
reases. Then the algorithm is run forvarious N and the results are plotted on a graph. Figure 2 shows su
h agraph for instan
es with random 20-bit integers. As 
an be seen, the run-ning time in
reases exponentially until N = 24 after whi
h it de
reases. Infa
t the 
omplete di�eren
ing method has linear running time for large N .This 
an only mean that the method �nds a perfe
t partition in the �rst tryand be
ause of the pruning, stops after that.Figure 2 also shows the probability of an instan
e to have a perfe
t par-tition. It 
an be seen that the peak in the running time 
oin
ides with thesudden rise in the probability of perfe
t partition. The probability 
an be an-alyti
ally analyzed rigorously [2℄ but we will show here an easier and shorteranalysis whi
h is somewhat sloppy [4℄.A partition A 
an be 
oded with binary variables si = ±1 by de�ningthat si = +1 if ai ∈ A and si = −1 otherwise. The dis
repan
y of theparition 
an then be de�ned as E = |D(s)| where

D(s) =
N
∑

i=1

aisi. (1)4



Figure 2: Phase transition in average running time for 20-bit integers. Thedashed line shows the probability of a perfe
t partition. (From Mertens [4℄.)If we 
onsider a random walker in one dimension who takes steps to theright (si = +1) or left (si = −1) with random step sizes (ai) then we 
aninterpret D as the distan
e to the origin at the end of the walk. Then theaverage number of walks ending at D is
Ω(D) =

∑

{si}

〈

δ

(

D −
N
∑

i=1

aisi

)〉 (2)where the averaging is over the random numbers {ai}.If we 
onsider a �xed walk {si} then for large N the distan
e to theorigin, ∑N
j=1 ajsj, is Gaussian with mean

〈D〉 = 〈a〉M (3)where M =
∑

j sj and varian
e
〈

D2
〉

− 〈D〉2 = M2
〈

a2
〉

− (M 〈a〉)2 = M2(
〈

a2
〉

− 〈a〉2) (4)Next we need to 
al
ulate averages of M and M2 when averaging overthe random walk {si}. For large N we get
[M ] = 0 (5)and

[

M2
]

=

〈

N
∑

i=1

si

N
∑

j=1

sj

〉

=
N
∑

i=1

〈

s2
i
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+
∑

i6=j

〈sisj〉 = N. (6)5



Now we 
an average 〈D〉 and 〈D2
〉 over the random walk {si}:

[〈D〉] = [M ] 〈a〉 = 0 (7)and
[〈

D2
〉]

− [〈D〉]2 =
[

M2
] 〈

a2
〉

= N
〈

a2
〉 (8)Substituting the mean (7) and varian
e (8) to the probability fun
tion ofthe Gaussian distribution, the probability of ending the walk at distan
e Dreads

p(D) =
1

√

2πN 〈a2〉
exp

(

− D2

2N 〈a2〉

)

. (9)Now we have to note that the walk 
an only end at even numbers if thesum ∑

ai is even and at odd numbers otherwise. Thus the average numberof walks ending at D is
Ω(D) = 2N2p(D) =

2N+1

√

2πN 〈a2〉
exp

(

− D2

2N 〈a2〉

)

. (10)The se
ond moment of a variable a with uniform dis
rete distribution is
〈

a2
〉

=
1

3
22κN (1 − O(2−κN )). (11)Substituting this to Equation 10 and solving for log2 Ω(0) we get

log2 Ω(0) = N(κc − κ) (12)with
κc = 1 − log2 N

2N
− 1

2N
log2

(

π

6

)

. (13)From Equation 12 we see that when κ < κc there are exponentially manyperfe
t partitions and when κ > κc the probability of a perfe
t partition isexponentially small. Thus the problem spa
e of NPP is divided into tworegions: The easy phase with κ < κc where perfe
t partitions are abundantand heuristi
 algorithms often �nd a perfe
t partition in polynomial timeand the hard phase with κ > κc where perfe
t partitions are very rare andheuristi
 algorithms are no better than blind sear
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