
Summary: Phase transition in minimizing spinglass energiesAntti HyvärinenO
tober 16, 2007Abstra
tThis summary des
ribes an algorithm for determining the ground stateof a given Ising spin glass instan
e, and presents some results on lo
at-ing the phase transition point between Ising spin glass phase and ferro-magnet phase by simulations on a large 
olle
tion of random z-regulargraphs of di�erent sizes. The algorithm is based on transforming theproblem of determining the ground state of a weighted graph represent-ing an Ising spin glass to the problem of determining the maximum 
utin a graph, formulating the maximization problem as an integer linearproblem and solving the problem using a sophisti
ated bran
h-and-
utalgorithm, a ba
ktra
king sear
h algorithm for 
onstraint problems. Theresults are 
ompared to results from Bethe-Peierls approximation on larger
z-regular random graphs obtained by Monte-Carlo simulation and the 
av-ity method. Slightly above the phase transition point, the run time of theBran
h-and-Cut algorithm shows a sharp de
rease, indi
ating that thereis a relation between the physi
al phenomenon of phase transitions andthe di�
ulty of determining the ground state of an instan
e.1 Introdu
tionThe great progress a
hieved in e�
ien
y of 
ombinatorial algorithms dur-ing the last two de
ades has rendered possible the study of non-trivialphysi
al systems using 
omputers. Many su
h systems previously deemedpra
ti
ally unsolvable due to the famous NP-
ompleteness result of S. A.Cook have been lately solved within reasonable time limits despite thepotentially huge sear
h spa
e asso
iated with su
h problems.However, from many domains of NP-
omplete problems, we �nd 
er-tain instan
es whi
h resist the e�
ient sear
h spa
e pruning te
hniques ofthe modern algorithms. While it is not surprising that there are di�
ultinstan
es of NP-
omplete problems as it is widely believed that P 6= NP,not every instan
e is equally di�
ult. In fa
t, given two seemingly similarproblems, one might be solved by the same algorithm within millise
onds,while the other might take days. Consequently, we are fa
ed with thequestion of what makes a problem hard.1
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−1+1Figure 1: An Ising spin glass instan
e with intera
tions and a spin 
on�gurationminimizing the energy of the instan
eOne su
h NP-
omplete problem originating from statisti
al physi
s isdetermining the ground state of an Ising spin glass. In experiments, thereis a 
lear transition from the spin glass phase were the magnetization isapproximately zero to the ferromagnet phase where almost every spin inthe system points to the same dire
tion, resulting in high magnetization.It is assumed, and later shown empiri
ally in this summary, that 
lose tothis transition a similar 
hange 
an be seen in the run time of a modernalgorithm when solving the 
orresponding minimization problem.This summary is based on two related arti
les, of whi
h the �rst de-s
ribes a Bran
h-and-Cut algorithm designed for solving di�
ult Isingspin glass problems [1℄, and the se
ond presents results on a set of regulargraphs [2℄.The summary is stru
tured as follows. In Se
t. 2 we des
ribe theIsing spin glass, the mapping to a max-
ut problem and des
ribe whatare Integer Linear Programs (ILPs). In Se
t. 3 we des
ribe the bran
h-and-
ut algorithm for max-
ut problems and des
ribe 
ertain heuristi
sdeveloped for Ising spin glasses. In Se
t. 4 we des
ribe the results from [2℄,and �nally 
on
lude in Se
t. 5.2 Basi
sGiven a �nite set of verti
es V ⊂ N and an intera
tion Jij ∈ R betweenverti
es i, j ∈ V , we 
onstru
t a weighted graph G = (V, E), where thereis an edge, or intera
tion, between two verti
es i, j if Jij 6= 0. The graph Gis 
alled an Ising spin glass. Ea
h vertex i is o

upied by a spin Si = ±1.Any spin might intera
t with an external �eld of strength h, representedby a �ghost spin� S0, whi
h 
an be �xed due to symmetry reasons to be
S0 = +1. An example of an Ising spin glass (without the external �eld)is given in Fig. 1.The problem of determining the ground state of the spin glass G isthe problem of pla
ing spins Si = ±1 to every vertex i su
h that the2



Hamiltonian of the spin 
on�guration ~S

H(~S) = −
X

(i,j)∈E

JijSiSj − h

n
X

i=1

S0Si (1)is minimized.A spin 
on�guration ~S partitions the verti
es into two sets V + = {i ∈
V | Si = +1} and V − = {i ∈ V | Si = −1}. We de�ne the 
ut δ(V +) tobe the subset of edges E with one endpoint in the set V + and the otherendpoint in the set V −. We 
an now reformulate the Hamiltonian of thespin 
on�guration ~S as

H(~S) = −2
X

(i,j)∈δ(V +)

(−Jij) −
X

(i,j)∈E

Jij (2)where the right summation 
orresponds to assuming that all the spinspoint to the same dire
tion and the left summation 
orre
ts the mistakemade in the right summation by substra
ting twi
e the intera
tions be-tween spins pointing to di�erent dire
tions.To formulate the ground state 
al
ulation of an Ising spin glass in-stan
e as a max-
ut problem in weighted graphs, we use cij = −Jij as theweight of the edges (i, j) and �nally solve the problem of maximizing
X

(i,j)∈δ(V +)

cij (3)over all 
uts δ(V +).We will formulate this problem as an Integer Linear Program (ILP).The formulation is presented in Se
t. 3, but we mention here the de�nitionof an ILP problem.De�nition The integer linear programming problem is the maximizationproblem
max~x{~c

T
~x | A~x ≤ ~b},where ~c ∈ R

n is the 
ost ve
tor of n elements, ~x is the unknown in theequation, a ve
tor of elements x1, . . . , xn, and ea
h xe is an integer, and
A ∈ R

m×n is a matrix of m×n elements 
orresponding to the 
onstraintsof the problem together with the ve
tor ~b ∈ R
mThe problem of determining whether there exists a ve
tor ~x su
h thatthe 
onstraints are satis�ed 
an easily be shown NP-
omplete by redu
ingfor example 3-SAT to it.Theorem ILP is NP-
ompleteProof ILP is in NP, whi
h 
an be seen by nondeterministi
ally assigninginteger values for xi and verifying (in polynomial time) that ea
h equationholds. We show the NP-
ompleteness by redu
ing 3-SAT to ILP. Givenany 
lause l1 ∨· · ·∨ ln of n literals, the 
lause 
an be translated to an ILPby setting p1 + · · · + pn ≤ b, where pi = −xi if li = xi, and pi = −1 + xi3



fun
tion Bran
h-and-Bound(P )
A ← {P} /∗ Initialize set of sub-problems ∗/
~x∗ ← Any 
ut of P /∗ Initial guess ∗/while A 6= ∅

C ← An element from A
A ← A \ {C}if ~c(optimal solution for C) > ~c(~x∗)/∗ Update optimal value ∗/

~x∗ ← optimal solutionelse if C has no feasible solutionbreakelse if ~c(best solution for C) ≤ ~c(~x∗)/∗ Bound ∗/breakelsesplit C into subproblems and add them to Aend ifend whilereturn ~x∗.Algorithm 1: The Bran
h-and-Bound algorithm for maximization prob-lems if li = ¬xi, for x1, . . . , xn ∈ {0, 1}, and 0 > b > −1. If we would have analgorithm for solving ILP in polynomial time, the same algorithm 
ouldbe used for solving 3-SAT, and thus any problem in NP. �If the integral 
ondition on ~x is lifted, there are e�
ient algorithms forsolving the problem (e.g. the Simplex algorithm).3 The Bran
h-and-Cut AlgorithmThe Bran
h-and-Cut algorithm is based on a simpler Bran
h-and-Boundalgorithm given in Algorithm 1. The algorithm takes as input the origi-nal optimization problem P , and 
omputes ~x∗, the optimum solution forthe problem P . It is a general purpose optimization algorithm based onba
ktra
k sear
h.Given a set F of all possible 
uts, we present the 
ut as a 
hara
teristi
ve
tor ~x = xe1
, . . . , xen

, where n is the number of edges in graph G,
xei

= 1 if ei ∈ δ(V +) and otherwise xei
= 0.The 
ost of a 
ut F ∈ F is denoted as ~c(F ) =

P

e∈F ce = ~cT ~x. Nowthe problem of determining the maximum 
ut in the graph G is that ofdetermining
max

~x
{~cT

~x},4
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xk,l = 0 xk,l = 1 xm,n = 0Figure 2: A bran
h-and-
ut sear
h treewhere ~x ranges over 
hara
teristi
 ve
tors of 
uts. We now need to 
onvertthe problem of representing 
uts as ILP. From graph theory, we have thefollowingTheorem Let F be any set of edges in graph G. Now F is a 
ut if andonly if F 
ontains an even number of edges from every 
y
le in G.The ne
essity of the theorem is 
lear, sin
e starting a 
y
le from a vertex
v ∈ V , we must 
ross even number of times the 
ut in order to return to
v. The proof of su�
ien
y is not obvious, and the reader is referred tothe answer of Exer
ise 4.1.26. in [3℄.We 
an now formulate the max-
ut problem as

max{~cT
~x | ~x is integral, ~x(Q) − ~x(C \ Q) ≤ |Q| − 1} (4)where the equations on the right side are 
alled 
y
le inequalities, and arewritten for every 
y
le C in graph G and for every odd-
ardinality subset

Q of C. An equation of this form holds, sin
e if ~x is a 
ut, C is a 
y
leand Q is an odd-
ardinality subset of the 
y
le C, the 
ardinality of theinterse
tion of the 
ut ~x and the set C \Q, ~x(C \Q), must either be emptyin whi
h 
ase also ~x(Q) = 0 (by odd-
ardinality of Q), or it must be atleast one.Sin
e there is in the worst 
ase an exponential number of 
y
les ina graph, and there are exponentially many subsets Q, the formulationof the 
y
le inequalities will be worst-
ase exponential in the number ofverti
es in G. Consequently, the full set of 
y
le inequalities for a typi
alnon-trivial instan
e would not �t in the memory of any 
omputer. Thus,
ertain relaxation te
hniques will have to be used.Sin
e the ILP in (4) 
annot be solved in general 
ase using the fullset of 
y
le inequalities, we use a relaxation of the problem where mostof the inequalities are left out. Solutions to this problem are not ele-ments of F , but elements of a superset F ′ ⊃ F . By set in
lusion, we
an guarantee that any maximum solution to that problem must be atleast as good as the a
tual optimum solution to the original problem.This information 
an be e�
iently used in the bound step of bran
h-and-bound algorithm, resulting in the bran
h-and-
ut algorithm, as follows.Assuming that the sear
h pro
ess has found a solution ~x∗ 
orrespondingto some real 
ut somewhere in the bran
h xi,j = 0, xk,l = 0 (see Fig 2).When the algorithm �nally returns from this bran
h it tries the bran
h
xi,j = 0, xk,l = 1. Now the bran
h-and-
ut algorithm, working on somesubset F ′ in this bran
h, solves the problem by using standard linearequation solving te
hniques, resulting in a possibly real-valued optimal5



1 2

3Figure 3: The graph K3 and the 
orresponding 
y
le inequalitiessolution for that subproblem. If the 
ost of this solution is less than thatfor ~x∗, the algorithm 
an prune this bran
h xi,j = 0, xk,l = 1 withoutfurther 
he
king, sin
e every optimum solution below this bran
h is overa more 
onstrained subset and thus 
annot be higher than ~x∗.Finally, the algorithm will have obtained the optimum solution, whenthe value of the 
ut ~x∗ 
an be shown to be equal to the upper bound fromthe relaxation.Example As an example of the linear programming des
ription of a 
ut,we study the 
uts over the 
omplete graph K3, or triangle (in left of Fig. 3).The triangle has two 
y
les, C1 = ∅, C2 = {(1, 2), (2, 3), (3, 1)}. Theempty 
y
le C1 has no odd-
ardinality sub-sets, and no 
y
le inequali-ties 
an be 
onstru
ted. The 
y
le C2 has four odd-
ardinality sub-sets,
Q1 = {(1, 2)}, Q2 = {(2, 3)}, Q3 = {(3, 1)}, Q4 = {(1, 2), (2, 3), (3, 1)}.The 
orresponding 
y
le inequalities are

x12 − x23 − x31 ≤ 0, for Q1

−x12 + x23 − x31 ≤ 0, for Q2

−x12 − x23 + x31 ≤ 0, for Q3

x12 + x23 + x31 ≤ 2, for Q4The reader 
an verify that all a
tual 
uts (∅, {(1, 2), (2, 3)}, {(1, 2), (3, 1)},
{(2, 3), (3, 1)}) satisfy these equations. The 3-dimensional representationover whi
h the optimization problem is solved is given in right of Fig. 3.The key problem in bran
h-and-
ut is to �nd small number of inequalitieswhi
h are of good quality, in the sense that they 
ut o� signi�
ant areasof the sear
h spa
e. This is where good heuristi
s are ne
essary. Thearti
le [1℄ presents several domain-spe
i�
 heuristi
s, of whi
h some 
he
kthe 
urrent solution for being a legal 
ut and produ
e 
y
le inequalities inthe negative 
ase, and others produ
e 
y
le inequalities based on the stati
stru
ture of the problem. The paper gives a polynomial-time 
ompletealgorithm for produ
ing 
y
le inequalities from a violating solution basedon shortest path 
omputation in a weighted graph. In addition, the paperdes
ribes a fast heuristi
 algorithm of run time C(|E| log |V |) based ongraph two-
oloring. Furthermore, 
ertain domain-spe
i�
 
y
les 
an beformed from two-dimensional grids and three-dimensional 
ubes. It is6



Figure 4: Average magnetization for di�erent system sizes and µ, for z = 4-regular and z = 6-regular graphs [2℄also possible to use maximum-weight spanning trees where the weightsare 
onstru
ted from the in
iden
e ve
tor of the violating solution, andintrodu
e an additional edge from G to the spanning tree to form a 
y
leinequality possibly violated by the solution.4 ExperimentsThe Ising spin glass instan
es studied in [2℄ are 
onstru
ted by 
reatinga random z-regular graph (in whi
h every vertex has exa
tly z neigh-bors), and assigning a random intera
tion Jij between two neighbors i, jfrom the Gaussian distribution with mean µ and varian
e of one. Themagnetization of a system of size N with spins Si on verti
es i, de�ned as
m(µ, N) =

» P

i Si

N

–

J

(5)is 
omputed for di�erent system sizes N and di�erent means µ.The results in Fig. 4 show the behaviour of the magnetization as afun
tion of µ, for z = 4 and z = 6. The solid line in the �gures is obtainedfrom Bethe-Peierls approximation by the 
avity method for system sizesbetween 103 and 105 verti
es. The results show the phase transition at
µc = 0.742±0.005 for z = 4 and µc = 0.546±0.005 for z = 6, and suggestthat the exa
t results for similar sized systems follow the behaviour ofBethe-Peierls approximation.The exa
t point of phase transition in bran
h-and-
ut results is di�
ultto see from Fig. 4, but 
an be determined using the Binder 
umulant
g(µ, N) de�ned using the se
ond and fourth moments of the distribution

7



Figure 5: Determining µc from Bran
h-and-Cut results using Binder 
umu-lant [2℄from the magnetization by
g(µ, N) =

1

2

0

B

B

B

@

3 −

»

“
P

i
Si

N

”4
–

J
»

“
P

i
Si

N

”2
–2

J

1

C

C

C

A

(6)The results for di�erent system sizes should interse
t at the phasetransition point and are presented in Fig. 5 for z = 4 and z = 6. Theyshow the interse
tion at µc = 0.77±0.02 and µc = 0.56±0.02 respe
tively,a result 
ompatible with the results from the 
avity approa
h.In Fig. 6, the run time of the bran
h-and-
ut algorithm shows a dra-mati
al de
rease slightly above µc. The spin glass problems seem oftendi�
ult, whereas the ferromagnet problems are always easy. One 
an alsosee from the pi
ture that the di�
ulty of solving the spin glass phase in-
reases superpolynomially with regards to the system size, whereas thegrowth seems linear deep in the ferromagnet phase. This 
on�rms theexisten
e of a �run time phase transition�.5 Con
lusionsDetermining the ground state or minimum energy-state of an Ising spinglass is a prototypi
al example from statisti
al physi
s, where 
ombinato-rial te
hniques 
an be used to �nd an exa
t solution to a �nite problem.The arti
le [1℄ des
ribes a method for transforming the problem ofdetermining the ground state of an Ising spin glass to a max-
ut problemand presents an e�
ient algorithm for 
omputing optimum solutions of themax-
ut problem by using an elaborate variation of bran
h-and-
ut. Thearti
le [2℄ reports experimental evaluation of the bran
h-and-
ut algorithmon 
ertain spin glass instan
es, and 
on�rms the existen
e of a 
lear phasetransition observed also in the laboratory experiments.8



Figure 6: Run time of the bran
h-and-
ut algorithm near µc [2℄The algorithm produ
es results whi
h are 
ompatible with analyti
alresults from nearly in�nite-sized systems, showing a 
lear 
hange in thebehaviour of the studied system at the phase transition point. Surpris-ingly, there is a 
orresponding 
hange in the behaviour of the run timeof the algorithm slightly above the physi
al phase transition. This is aphenomenon observed in solving of several NP-
omplete problems andprovides 
ertain insight to the question of what makes a problem hard.Referen
es[1℄ Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exa
tGround States of Hard Ising Spin Glass Problems by Bran
h-and-Cut.In: New Optimization Algorithms in Physi
s. (2004) 47�68[2℄ Liers, F., Palassini, M., Hartmann, A.K., Jünger, M.: Ground state ofthe bethe latti
e spin glass and running time of an exa
t optimizationalgorithm. Physi
al Review B 68(9) (2003) 094406[3℄ West, D.B.: Introdu
tion to Graph Theory. 2 edn. Prenti
e Hall(2005)
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