
Summary: Phase transition in minimizing spinglass energiesAntti HyvärinenOtober 16, 2007AbstratThis summary desribes an algorithm for determining the ground stateof a given Ising spin glass instane, and presents some results on loat-ing the phase transition point between Ising spin glass phase and ferro-magnet phase by simulations on a large olletion of random z-regulargraphs of di�erent sizes. The algorithm is based on transforming theproblem of determining the ground state of a weighted graph represent-ing an Ising spin glass to the problem of determining the maximum utin a graph, formulating the maximization problem as an integer linearproblem and solving the problem using a sophistiated branh-and-utalgorithm, a baktraking searh algorithm for onstraint problems. Theresults are ompared to results from Bethe-Peierls approximation on larger
z-regular random graphs obtained by Monte-Carlo simulation and the av-ity method. Slightly above the phase transition point, the run time of theBranh-and-Cut algorithm shows a sharp derease, indiating that thereis a relation between the physial phenomenon of phase transitions andthe di�ulty of determining the ground state of an instane.1 IntrodutionThe great progress ahieved in e�ieny of ombinatorial algorithms dur-ing the last two deades has rendered possible the study of non-trivialphysial systems using omputers. Many suh systems previously deemedpratially unsolvable due to the famous NP-ompleteness result of S. A.Cook have been lately solved within reasonable time limits despite thepotentially huge searh spae assoiated with suh problems.However, from many domains of NP-omplete problems, we �nd er-tain instanes whih resist the e�ient searh spae pruning tehniques ofthe modern algorithms. While it is not surprising that there are di�ultinstanes of NP-omplete problems as it is widely believed that P 6= NP,not every instane is equally di�ult. In fat, given two seemingly similarproblems, one might be solved by the same algorithm within milliseonds,while the other might take days. Consequently, we are faed with thequestion of what makes a problem hard.1
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−1+1Figure 1: An Ising spin glass instane with interations and a spin on�gurationminimizing the energy of the instaneOne suh NP-omplete problem originating from statistial physis isdetermining the ground state of an Ising spin glass. In experiments, thereis a lear transition from the spin glass phase were the magnetization isapproximately zero to the ferromagnet phase where almost every spin inthe system points to the same diretion, resulting in high magnetization.It is assumed, and later shown empirially in this summary, that lose tothis transition a similar hange an be seen in the run time of a modernalgorithm when solving the orresponding minimization problem.This summary is based on two related artiles, of whih the �rst de-sribes a Branh-and-Cut algorithm designed for solving di�ult Isingspin glass problems [1℄, and the seond presents results on a set of regulargraphs [2℄.The summary is strutured as follows. In Set. 2 we desribe theIsing spin glass, the mapping to a max-ut problem and desribe whatare Integer Linear Programs (ILPs). In Set. 3 we desribe the branh-and-ut algorithm for max-ut problems and desribe ertain heuristisdeveloped for Ising spin glasses. In Set. 4 we desribe the results from [2℄,and �nally onlude in Set. 5.2 BasisGiven a �nite set of verties V ⊂ N and an interation Jij ∈ R betweenverties i, j ∈ V , we onstrut a weighted graph G = (V, E), where thereis an edge, or interation, between two verties i, j if Jij 6= 0. The graph Gis alled an Ising spin glass. Eah vertex i is oupied by a spin Si = ±1.Any spin might interat with an external �eld of strength h, representedby a �ghost spin� S0, whih an be �xed due to symmetry reasons to be
S0 = +1. An example of an Ising spin glass (without the external �eld)is given in Fig. 1.The problem of determining the ground state of the spin glass G isthe problem of plaing spins Si = ±1 to every vertex i suh that the2



Hamiltonian of the spin on�guration ~S

H(~S) = −
X

(i,j)∈E

JijSiSj − h

n
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S0Si (1)is minimized.A spin on�guration ~S partitions the verties into two sets V + = {i ∈
V | Si = +1} and V − = {i ∈ V | Si = −1}. We de�ne the ut δ(V +) tobe the subset of edges E with one endpoint in the set V + and the otherendpoint in the set V −. We an now reformulate the Hamiltonian of thespin on�guration ~S as

H(~S) = −2
X

(i,j)∈δ(V +)

(−Jij) −
X
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Jij (2)where the right summation orresponds to assuming that all the spinspoint to the same diretion and the left summation orrets the mistakemade in the right summation by substrating twie the interations be-tween spins pointing to di�erent diretions.To formulate the ground state alulation of an Ising spin glass in-stane as a max-ut problem in weighted graphs, we use cij = −Jij as theweight of the edges (i, j) and �nally solve the problem of maximizing
X

(i,j)∈δ(V +)

cij (3)over all uts δ(V +).We will formulate this problem as an Integer Linear Program (ILP).The formulation is presented in Set. 3, but we mention here the de�nitionof an ILP problem.De�nition The integer linear programming problem is the maximizationproblem
max~x{~c

T
~x | A~x ≤ ~b},where ~c ∈ R

n is the ost vetor of n elements, ~x is the unknown in theequation, a vetor of elements x1, . . . , xn, and eah xe is an integer, and
A ∈ R

m×n is a matrix of m×n elements orresponding to the onstraintsof the problem together with the vetor ~b ∈ R
mThe problem of determining whether there exists a vetor ~x suh thatthe onstraints are satis�ed an easily be shown NP-omplete by reduingfor example 3-SAT to it.Theorem ILP is NP-ompleteProof ILP is in NP, whih an be seen by nondeterministially assigninginteger values for xi and verifying (in polynomial time) that eah equationholds. We show the NP-ompleteness by reduing 3-SAT to ILP. Givenany lause l1 ∨· · ·∨ ln of n literals, the lause an be translated to an ILPby setting p1 + · · · + pn ≤ b, where pi = −xi if li = xi, and pi = −1 + xi3



funtion Branh-and-Bound(P )
A ← {P} /∗ Initialize set of sub-problems ∗/
~x∗ ← Any ut of P /∗ Initial guess ∗/while A 6= ∅

C ← An element from A
A ← A \ {C}if ~c(optimal solution for C) > ~c(~x∗)/∗ Update optimal value ∗/

~x∗ ← optimal solutionelse if C has no feasible solutionbreakelse if ~c(best solution for C) ≤ ~c(~x∗)/∗ Bound ∗/breakelsesplit C into subproblems and add them to Aend ifend whilereturn ~x∗.Algorithm 1: The Branh-and-Bound algorithm for maximization prob-lems if li = ¬xi, for x1, . . . , xn ∈ {0, 1}, and 0 > b > −1. If we would have analgorithm for solving ILP in polynomial time, the same algorithm ouldbe used for solving 3-SAT, and thus any problem in NP. �If the integral ondition on ~x is lifted, there are e�ient algorithms forsolving the problem (e.g. the Simplex algorithm).3 The Branh-and-Cut AlgorithmThe Branh-and-Cut algorithm is based on a simpler Branh-and-Boundalgorithm given in Algorithm 1. The algorithm takes as input the origi-nal optimization problem P , and omputes ~x∗, the optimum solution forthe problem P . It is a general purpose optimization algorithm based onbaktrak searh.Given a set F of all possible uts, we present the ut as a harateristivetor ~x = xe1
, . . . , xen

, where n is the number of edges in graph G,
xei

= 1 if ei ∈ δ(V +) and otherwise xei
= 0.The ost of a ut F ∈ F is denoted as ~c(F ) =

P

e∈F ce = ~cT ~x. Nowthe problem of determining the maximum ut in the graph G is that ofdetermining
max

~x
{~cT

~x},4
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xk,l = 0 xk,l = 1 xm,n = 0Figure 2: A branh-and-ut searh treewhere ~x ranges over harateristi vetors of uts. We now need to onvertthe problem of representing uts as ILP. From graph theory, we have thefollowingTheorem Let F be any set of edges in graph G. Now F is a ut if andonly if F ontains an even number of edges from every yle in G.The neessity of the theorem is lear, sine starting a yle from a vertex
v ∈ V , we must ross even number of times the ut in order to return to
v. The proof of su�ieny is not obvious, and the reader is referred tothe answer of Exerise 4.1.26. in [3℄.We an now formulate the max-ut problem as

max{~cT
~x | ~x is integral, ~x(Q) − ~x(C \ Q) ≤ |Q| − 1} (4)where the equations on the right side are alled yle inequalities, and arewritten for every yle C in graph G and for every odd-ardinality subset

Q of C. An equation of this form holds, sine if ~x is a ut, C is a yleand Q is an odd-ardinality subset of the yle C, the ardinality of theintersetion of the ut ~x and the set C \Q, ~x(C \Q), must either be emptyin whih ase also ~x(Q) = 0 (by odd-ardinality of Q), or it must be atleast one.Sine there is in the worst ase an exponential number of yles ina graph, and there are exponentially many subsets Q, the formulationof the yle inequalities will be worst-ase exponential in the number ofverties in G. Consequently, the full set of yle inequalities for a typialnon-trivial instane would not �t in the memory of any omputer. Thus,ertain relaxation tehniques will have to be used.Sine the ILP in (4) annot be solved in general ase using the fullset of yle inequalities, we use a relaxation of the problem where mostof the inequalities are left out. Solutions to this problem are not ele-ments of F , but elements of a superset F ′ ⊃ F . By set inlusion, wean guarantee that any maximum solution to that problem must be atleast as good as the atual optimum solution to the original problem.This information an be e�iently used in the bound step of branh-and-bound algorithm, resulting in the branh-and-ut algorithm, as follows.Assuming that the searh proess has found a solution ~x∗ orrespondingto some real ut somewhere in the branh xi,j = 0, xk,l = 0 (see Fig 2).When the algorithm �nally returns from this branh it tries the branh
xi,j = 0, xk,l = 1. Now the branh-and-ut algorithm, working on somesubset F ′ in this branh, solves the problem by using standard linearequation solving tehniques, resulting in a possibly real-valued optimal5



1 2

3Figure 3: The graph K3 and the orresponding yle inequalitiessolution for that subproblem. If the ost of this solution is less than thatfor ~x∗, the algorithm an prune this branh xi,j = 0, xk,l = 1 withoutfurther heking, sine every optimum solution below this branh is overa more onstrained subset and thus annot be higher than ~x∗.Finally, the algorithm will have obtained the optimum solution, whenthe value of the ut ~x∗ an be shown to be equal to the upper bound fromthe relaxation.Example As an example of the linear programming desription of a ut,we study the uts over the omplete graph K3, or triangle (in left of Fig. 3).The triangle has two yles, C1 = ∅, C2 = {(1, 2), (2, 3), (3, 1)}. Theempty yle C1 has no odd-ardinality sub-sets, and no yle inequali-ties an be onstruted. The yle C2 has four odd-ardinality sub-sets,
Q1 = {(1, 2)}, Q2 = {(2, 3)}, Q3 = {(3, 1)}, Q4 = {(1, 2), (2, 3), (3, 1)}.The orresponding yle inequalities are

x12 − x23 − x31 ≤ 0, for Q1

−x12 + x23 − x31 ≤ 0, for Q2

−x12 − x23 + x31 ≤ 0, for Q3

x12 + x23 + x31 ≤ 2, for Q4The reader an verify that all atual uts (∅, {(1, 2), (2, 3)}, {(1, 2), (3, 1)},
{(2, 3), (3, 1)}) satisfy these equations. The 3-dimensional representationover whih the optimization problem is solved is given in right of Fig. 3.The key problem in branh-and-ut is to �nd small number of inequalitieswhih are of good quality, in the sense that they ut o� signi�ant areasof the searh spae. This is where good heuristis are neessary. Theartile [1℄ presents several domain-spei� heuristis, of whih some hekthe urrent solution for being a legal ut and produe yle inequalities inthe negative ase, and others produe yle inequalities based on the statistruture of the problem. The paper gives a polynomial-time ompletealgorithm for produing yle inequalities from a violating solution basedon shortest path omputation in a weighted graph. In addition, the paperdesribes a fast heuristi algorithm of run time C(|E| log |V |) based ongraph two-oloring. Furthermore, ertain domain-spei� yles an beformed from two-dimensional grids and three-dimensional ubes. It is6



Figure 4: Average magnetization for di�erent system sizes and µ, for z = 4-regular and z = 6-regular graphs [2℄also possible to use maximum-weight spanning trees where the weightsare onstruted from the inidene vetor of the violating solution, andintrodue an additional edge from G to the spanning tree to form a yleinequality possibly violated by the solution.4 ExperimentsThe Ising spin glass instanes studied in [2℄ are onstruted by reatinga random z-regular graph (in whih every vertex has exatly z neigh-bors), and assigning a random interation Jij between two neighbors i, jfrom the Gaussian distribution with mean µ and variane of one. Themagnetization of a system of size N with spins Si on verties i, de�ned as
m(µ, N) =

» P

i Si

N

–

J

(5)is omputed for di�erent system sizes N and di�erent means µ.The results in Fig. 4 show the behaviour of the magnetization as afuntion of µ, for z = 4 and z = 6. The solid line in the �gures is obtainedfrom Bethe-Peierls approximation by the avity method for system sizesbetween 103 and 105 verties. The results show the phase transition at
µc = 0.742±0.005 for z = 4 and µc = 0.546±0.005 for z = 6, and suggestthat the exat results for similar sized systems follow the behaviour ofBethe-Peierls approximation.The exat point of phase transition in branh-and-ut results is di�ultto see from Fig. 4, but an be determined using the Binder umulant
g(µ, N) de�ned using the seond and fourth moments of the distribution

7



Figure 5: Determining µc from Branh-and-Cut results using Binder umu-lant [2℄from the magnetization by
g(µ, N) =
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(6)The results for di�erent system sizes should interset at the phasetransition point and are presented in Fig. 5 for z = 4 and z = 6. Theyshow the intersetion at µc = 0.77±0.02 and µc = 0.56±0.02 respetively,a result ompatible with the results from the avity approah.In Fig. 6, the run time of the branh-and-ut algorithm shows a dra-matial derease slightly above µc. The spin glass problems seem oftendi�ult, whereas the ferromagnet problems are always easy. One an alsosee from the piture that the di�ulty of solving the spin glass phase in-reases superpolynomially with regards to the system size, whereas thegrowth seems linear deep in the ferromagnet phase. This on�rms theexistene of a �run time phase transition�.5 ConlusionsDetermining the ground state or minimum energy-state of an Ising spinglass is a prototypial example from statistial physis, where ombinato-rial tehniques an be used to �nd an exat solution to a �nite problem.The artile [1℄ desribes a method for transforming the problem ofdetermining the ground state of an Ising spin glass to a max-ut problemand presents an e�ient algorithm for omputing optimum solutions of themax-ut problem by using an elaborate variation of branh-and-ut. Theartile [2℄ reports experimental evaluation of the branh-and-ut algorithmon ertain spin glass instanes, and on�rms the existene of a lear phasetransition observed also in the laboratory experiments.8



Figure 6: Run time of the branh-and-ut algorithm near µc [2℄The algorithm produes results whih are ompatible with analytialresults from nearly in�nite-sized systems, showing a lear hange in thebehaviour of the studied system at the phase transition point. Surpris-ingly, there is a orresponding hange in the behaviour of the run timeof the algorithm slightly above the physial phase transition. This is aphenomenon observed in solving of several NP-omplete problems andprovides ertain insight to the question of what makes a problem hard.Referenes[1℄ Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing ExatGround States of Hard Ising Spin Glass Problems by Branh-and-Cut.In: New Optimization Algorithms in Physis. (2004) 47�68[2℄ Liers, F., Palassini, M., Hartmann, A.K., Jünger, M.: Ground state ofthe bethe lattie spin glass and running time of an exat optimizationalgorithm. Physial Review B 68(9) (2003) 094406[3℄ West, D.B.: Introdution to Graph Theory. 2 edn. Prentie Hall(2005)
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