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Abstract

This summary describes an algorithm for determining the ground state
of a given Ising spin glass instance, and presents some results on locat-
ing the phase transition point between Ising spin glass phase and ferro-
magnet phase by simulations on a large collection of random z-regular
graphs of different sizes. The algorithm is based on transforming the
problem of determining the ground state of a weighted graph represent-
ing an Ising spin glass to the problem of determining the maximum cut
in a graph, formulating the maximization problem as an integer linear
problem and solving the problem using a sophisticated branch-and-cut
algorithm, a backtracking search algorithm for constraint problems. The
results are compared to results from Bethe-Peierls approximation on larger
z-regular random graphs obtained by Monte-Carlo simulation and the cav-
ity method. Slightly above the phase transition point, the run time of the
Branch-and-Cut algorithm shows a sharp decrease, indicating that there
is a relation between the physical phenomenon of phase transitions and
the difficulty of determining the ground state of an instance.

1 Introduction

The great progress achieved in efficiency of combinatorial algorithms dur-
ing the last two decades has rendered possible the study of non-trivial
physical systems using computers. Many such systems previously deemed
practically unsolvable due to the famous NP-completeness result of S. A.
Cook have been lately solved within reasonable time limits despite the
potentially huge search space associated with such problems.

However, from many domains of NP-complete problems, we find cer-
tain instances which resist the efficient search space pruning techniques of
the modern algorithms. While it is not surprising that there are difficult
instances of NP-complete problems as it is widely believed that P # NP,
not every instance is equally difficult. In fact, given two seemingly similar
problems, one might be solved by the same algorithm within milliseconds,
while the other might take days. Consequently, we are faced with the
question of what makes a problem hard.



Figure 1: An Ising spin glass instance with interactions and a spin configuration
minimizing the energy of the instance

One such NP-complete problem originating from statistical physics is
determining the ground state of an Ising spin glass. In experiments, there
is a clear transition from the spin glass phase were the magnetization is
approximately zero to the ferromagnet phase where almost every spin in
the system points to the same direction, resulting in high magnetization.
It is assumed, and later shown empirically in this summary, that close to
this transition a similar change can be seen in the run time of a modern
algorithm when solving the corresponding minimization problem.

This summary is based on two related articles, of which the first de-
scribes a Branch-and-Cut algorithm designed for solving difficult Ising
spin glass problems [1], and the second presents results on a set of regular
graphs [2].

The summary is structured as follows. In Sect. 2 we describe the
Ising spin glass, the mapping to a max-cut problem and describe what
are Integer Linear Programs (ILPs). In Sect. 3 we describe the branch-
and-cut algorithm for max-cut problems and describe certain heuristics
developed for Ising spin glasses. In Sect. 4 we describe the results from [2],
and finally conclude in Sect. 5.

2 Basics

Given a finite set of vertices V' C N and an interaction J;; € R between
vertices i,j € V, we construct a weighted graph G = (V, E), where there
is an edge, or interaction, between two vertices i, j if J;; # 0. The graph G
is called an Ising spin glass. Each vertex ¢ is occupied by a spin S; = +1.
Any spin might interact with an external field of strength h, represented
by a “ghost spin” So, which can be fixed due to symmetry reasons to be
So = +1. An example of an Ising spin glass (without the external field)
is given in Fig. 1.

The problem of determining the ground state of the spin glass G is
the problem of placing spins S; = +1 to every vertex ¢ such that the



Hamiltonian of the spin configuration S
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is minimized.

A spin configuration S partitions the vertices into two sets V+ = {ie
V|Si=+41}and V- ={i € V| S; = —1}. We define the cut §(V1) to
be the subset of edges E with one endpoint in the set VT and the other
endpoint in the set V~. We can now reformulate the Hamiltonian of the
spin configuration S as

HES) =-2 > (=) - > Jy (2)
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where the right summation corresponds to assuming that all the spins
point to the same direction and the left summation corrects the mistake
made in the right summation by substracting twice the interactions be-
tween spins pointing to different directions.

To formulate the ground state calculation of an Ising spin glass in-
stance as a max-cut problem in weighted graphs, we use ¢;; = —J;; as the
weight of the edges (7, ) and finally solve the problem of maximizing

S ey (3)
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over all cuts 6(VT).

We will formulate this problem as an Integer Linear Program (ILP).
The formulation is presented in Sect. 3, but we mention here the definition
of an ILP problem.

Definition The integer linear programming problem is the mazimization
problem
mazz{c | AT < b},

—

where ¢ € R™ 1is the cost vector of n elements, T is the unknown in the
equation, a vector of elements x1,...,Tn, and each x. s an integer, and
A € R™*™ 4s a matriz of m X n elements corresponding to the constraints
of the problem together with the vector beR™

The problem of determining whether there exists a vector & such that
the constraints are satisfied can easily be shown NP-complete by reducing
for example 3-SAT to it.

Theorem ILP is NP-complete

Proof ILP is in NP, which can be seen by nondeterministically assigning
integer values for x; and verifying (in polynomial time) that each equation
holds. We show the NP-completeness by reducing 3-SAT to ILP. Given
any clause 1 V- - -V, of n literals, the clause can be translated to an ILP
by setting p1 + - -+ + pn < b, where p; = —z; if [; = z;, and p; = -1+ z;



function Branch-and-Bound(P)
A~ {P} /+ Initialize set of sub-
problems x/

Z* «— Any cut of P/« Initial guess x/
while A # (
C — An element from A
A— A\{C}
if ¢(optimal solution for C) > &(&*)
/% Update optimal value =/
T* < optimal solution
else if C' has no feasible solution
break
else if &(best solution for C) < &(&*)
/+* Bound x/
break
else
split C' into subproblems and add them to A
end if
end while
return r*.

Algorithm 1: The Branch-and-Bound algorithm for maximization prob-

lems

if l; = —w;, for z1,...,zn € {0,1}, and 0 > b > —1. If we would have an
algorithm for solving ILP in polynomial time, the same algorithm could
be used for solving 3-SAT, and thus any problem in NP. [

If the integral condition on & is lifted, there are efficient algorithms for
solving the problem (e.g. the Simplex algorithm).

3 The Branch-and-Cut Algorithm

The Branch-and-Cut algorithm is based on a simpler Branch-and-Bound
algorithm given in Algorithm 1. The algorithm takes as input the origi-
nal optimization problem P, and computes £*, the optimum solution for
the problem P. It is a general purpose optimization algorithm based on
backtrack search.

Given a set F of all possible cuts, we present the cut as a characteristic
vector £ = Zep,...,Te,, Where n is the number of edges in graph G,
ze; = 1 if e; € §(VT) and otherwise z., = 0.

The cost of a cut F' € F is denoted as ¢(F) = > .pce = é'z. Now
the problem of determining the maximum cut in the graph G is that of
determining

T
max{c T},
xT



Figure 2: A branch-and-cut search tree

where & ranges over characteristic vectors of cuts. We now need to convert
the problem of representing cuts as ILP. From graph theory, we have the
following

Theorem Let F be any set of edges in graph G. Now F is a cut if and
only if I contains an even number of edges from every cycle in G.
The necessity of the theorem is clear, since starting a cycle from a vertex

v € V, we must cross even number of times the cut in order to return to
v. The proof of sufficiency is not obvious, and the reader is referred to
the answer of Exercise 4.1.26. in [3].

We can now formulate the max-cut problem as

max{& 7 | & is integral, Z(Q) — Z(C'\ Q) < |Q| — 1} (4)

where the equations on the right side are called cycle inequalities, and are
written for every cycle C in graph G and for every odd-cardinality subset
Q of C. An equation of this form holds, since if Z is a cut, C is a cycle
and @ is an odd-cardinality subset of the cycle C, the cardinality of the
intersection of the cut & and the set C'\ @, Z(C'\ Q), must either be empty
in which case also Z(Q) = 0 (by odd-cardinality of @), or it must be at
least one.

Since there is in the worst case an exponential number of cycles in
a graph, and there are exponentially many subsets @, the formulation
of the cycle inequalities will be worst-case exponential in the number of
vertices in GG. Consequently, the full set of cycle inequalities for a typical
non-trivial instance would not fit in the memory of any computer. Thus,
certain relaxation techniques will have to be used.

Since the ILP in (4) cannot be solved in general case using the full
set of cycle inequalities, we use a relaxation of the problem where most
of the inequalities are left out. Solutions to this problem are not ele-
ments of F, but elements of a superset 7' O F. By set inclusion, we
can guarantee that any maximum solution to that problem must be at
least as good as the actual optimum solution to the original problem.
This information can be efficiently used in the bound step of branch-and-
bound algorithm, resulting in the branch-and-cut algorithm, as follows.
Assuming that the search process has found a solution £* corresponding

to some real cut somewhere in the branch z;; = 0,z,,; = 0 (see Fig 2).
When the algorithm finally returns from this branch it tries the branch
zi; = 0,25, = 1. Now the branch-and-cut algorithm, working on some

subset ' in this branch, solves the problem by using standard linear
equation solving techniques, resulting in a possibly real-valued optimal



Figure 3: The graph K3 and the corresponding cycle inequalities

solution for that subproblem. If the cost of this solution is less than that
for #*, the algorithm can prune this branch x;; = 0,2%; = 1 without
further checking, since every optimum solution below this branch is over
a more constrained subset and thus cannot be higher than z™.

Finally, the algorithm will have obtained the optimum solution, when
the value of the cut &* can be shown to be equal to the upper bound from
the relaxation.

Example As an example of the linear programming description of a cut,
we study the cuts over the complete graph Ks, or triangle (in left of Fig. 3).
The triangle has two cycles, C1 = §,C2 = {(1,2),(2,3),(3,1)}. The
empty cycle C1 has no odd-cardinality sub-sets, and no cycle inequali-
ties can be constructed. The cycle Cy has four odd-cardinality sub-sets,
Q1 = {(1’ 2)}7 Q2 = {(27 3)}a Qs = {(37 1)}a Q4 = {(1’ 2)7 (27 3)7 (3v 1)}

The corresponding cycle inequalities are

T12 — T23 — T31 <0, for Q1
—z12+ 23 —x31 <0, for Qe
—x12 — T3+ 31 <0, forQs
T12 + X23 + T31 <2, for Qa

The reader can verify that all actual cuts (0, {(1,2),(2,3)}, {(1,2),(3,1)},
{(2,3),(3,1)}) satisfy these equations. The 3-dimensional representation
over which the optimization problem is solved is given in right of Fig. 3.

The key problem in branch-and-cut is to find small number of inequalities

which are of good quality, in the sense that they cut off significant areas
of the search space. This is where good heuristics are necessary. The
article [1] presents several domain-specific heuristics, of which some check
the current solution for being a legal cut and produce cycle inequalities in
the negative case, and others produce cycle inequalities based on the static
structure of the problem. The paper gives a polynomial-time complete
algorithm for producing cycle inequalities from a violating solution based
on shortest path computation in a weighted graph. In addition, the paper
describes a fast heuristic algorithm of run time C(|E|log|V|) based on
graph two-coloring. Furthermore, certain domain-specific cycles can be
formed from two-dimensional grids and three-dimensional cubes. It is
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Figure 4: Average magnetization for different system sizes and pu, for z = 4-

regular and z = 6-regular graphs [2]

also possible to use maximum-weight spanning trees where the weights
are constructed from the incidence vector of the violating solution, and
introduce an additional edge from G to the spanning tree to form a cycle
inequality possibly violated by the solution.

4 Experiments

The Ising spin glass instances studied in [2] are constructed by creating
a random z-regular graph (in which every vertex has exactly z neigh-
bors), and assigning a random interaction J;; between two neighbors i, j
from the Gaussian distribution with mean p and variance of one. The
magnetization of a system of size N with spins S; on vertices ¢, defined as

=[5

(5)

is computed for different system sizes N and different means pu.

The results in Fig. 4 show the behaviour of the magnetization as a
function of y, for z = 4 and z = 6. The solid line in the figures is obtained
from Bethe-Peierls approximation by the cavity method for system sizes
between 10® and 10° vertices. The results show the phase transition at
pe = 0.74240.005 for z = 4 and p. = 0.546+0.005 for z = 6, and suggest
that the exact results for similar sized systems follow the behaviour of
Bethe-Peierls approximation.

The exact point of phase transition in branch-and-cut results is difficult
to see from Fig. 4, but can be determined using the Binder cumulant
g(p, N) defined using the second and fourth moments of the distribution



Figure 5:
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The results for different system sizes should intersect at the phase
transition point and are presented in Fig. 5 for z = 4 and z = 6. They
show the intersection at pt. = 0.77£0.02 and g = 0.56+0.02 respectively,
a result compatible with the results from the cavity approach.

In Fig. 6, the run time of the branch-and-cut algorithm shows a dra-
matical decrease slightly above p.. The spin glass problems seem often
difficult, whereas the ferromagnet problems are always easy. One can also
see from the picture that the difficulty of solving the spin glass phase in-
creases superpolynomially with regards to the system size, whereas the
growth seems linear deep in the ferromagnet phase. This confirms the
existence of a “run time phase transition”.

5

Conclusions

Determining the ground state or minimum energy-state of an Ising spin
glass is a prototypical example from statistical physics, where combinato-
rial techniques can be used to find an exact solution to a finite problem.

The article [1] describes a method for transforming the problem of
determining the ground state of an Ising spin glass to a max-cut problem
and presents an efficient algorithm for computing optimum solutions of the
max-cut problem by using an elaborate variation of branch-and-cut. The
article [2] reports experimental evaluation of the branch-and-cut algorithm
on certain spin glass instances, and confirms the existence of a clear phase
transition observed also in the laboratory experiments.
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Figure 6: Run time of the branch-and-cut algorithm near p. [2]

The algorithm produces results which are compatible with analytical
results from nearly infinite-sized systems, showing a clear change in the
behaviour of the studied system at the phase transition point. Surpris-
ingly, there is a corresponding change in the behaviour of the run time
of the algorithm slightly above the physical phase transition. This is a
phenomenon observed in solving of several NP-complete problems and
provides certain insight to the question of what makes a problem hard.
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