Phase transitions in combinatorial optimization problems Course at Helsinki Technical University, Finland, autumn 2007 by Alexander K. Hartmann (University of Oldenburg) Lecture 8, 11. October 2007

4 Message passing algorithms

Basic idea: use statistical mechanic methods to find minimum VCs for give graphs G = (V, E).

Bethe-Peierls approach: Solve models, which are defined on trees recursively.

Equivalent approaches in computer science/ information theory, but only for replica-symmetric (RS) cases (belief propagation (BP))

Here: also replica-symmetry broken (RSB) case (\rightarrow survey propagation (SP))

Basic quantity $(i \in V)$

$$\pi_i \equiv \frac{|\{U \subset V \mid U \text{ is min. VC}, i \in U\}|}{|\{U \subset V \mid U \text{ is min. VC}\}|}$$
(1)

(how often i is covered for minimum VCs).

Construction of VCs, if π_i s known (general outline):

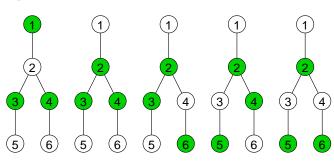
- $\pi_i = 1$: covered backbone \rightarrow cover!
- $\pi_i = 0$: uncovered backbone \rightarrow uncover!
- $0 < \pi_i < 1$: Since vertices are not independent: <u>Decimation</u> Cover some vertices, remove them and adjacent edges Recalculate π for remaining graph
- Repeat until done

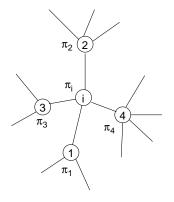
Main task: <u>estimate</u> π_i s accurately without enumerating all VCs.

4.1 The cavity graph

First idea: Give vertx *i*. Assumption: for all $j \in N(i)$: π_j known Calculate $\pi_i = 1 - \prod_{j \in N(i)} \pi_j$ \rightarrow assumption: neighbors independent. NOT true ! (if *i* is covered, <u>all</u> $j \in N(i)$: covered)

Example:





 $\begin{aligned} \pi_1 &= \frac{1}{5}, \pi_3 &= \frac{3}{5}, \pi_4 &= \frac{3}{5} \\ \text{but} \\ \pi_2 &= \frac{4}{5} &= \frac{100}{125} \neq \frac{116}{125} \\ 1 &- \frac{9}{125} &= 1 - \pi_1 \pi_3 \pi_4 \end{aligned}$

hence:

Definition: Cavity graph G_i : remove *i* and all edges $\{i, j\}$. If graph locally tree-like (loops are infitely large) $\rightarrow j_a, j_b \in \overline{N(i)}$ are almost independent! For finite graphs: algorithms = approximations

Generalized probabilities

$$\pi_{j|i} = \frac{|\{U \subset V_i \mid U \text{ is min. VC of } G_i, \ j \in U\}|}{|\{U \subset V_i \mid U \text{ is min. VC of } G_i\}|}$$

4.2 Warning propagation

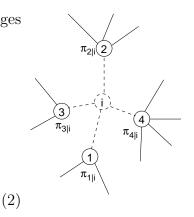
= Bethe-Peierls approach at $T = 0 \leftrightarrow \min$ VCs.

Reducing π_i 's:

$$\tilde{\pi}_{i} = \begin{cases} 0 & \text{if } \pi_{i} = 0 \\ * & \text{if } 0 < \pi_{i} < 1 \\ 1 & \text{if } \pi_{i} = 1 \end{cases}$$
(3)

(similar $\tilde{\pi}_{j|i}$'s) joker state *: "sometimes covered".

Aim: build self-consistent equations for $\{\tilde{\pi}_{j|i}\} \to \text{define messages}$: Intendet meaning: $u_{j\to i}$ sent from $j \in V$ to $i \in N(j)$:



If j uncovered: $u_{j\to i} = 1$: "Attention, to cover our connecting edge you should be covered, or I have to change state" ("warning")

If, $j: u_{j\to i} = 0$: "You can be either covered or uncovered." ("trivial message")

Definition: For arbitray subset $U \subset V$

$$u_{j \to i}(U) = \begin{cases} 0 & \text{if } j \in U \\ 1 & \text{if } j \notin U \end{cases} \quad \text{for } \{i, j\} \in E \tag{4}$$

Extension to sets \mathcal{M} of vertex subsets:

$$u_{j \to i}(\mathcal{M}) = \min_{U \in \mathcal{M}} \ u_{j \to i}(U) , \qquad (5)$$

a warning is sent only if j is not contained in any $U \in \mathcal{M}$. Special case: $\mathcal{M} = S_i$ = set of all min. VCs of G_i , then:

$$u_{j \to i}(\mathcal{S}_i) \equiv u_{j \to i}(\tilde{\pi}_{j|i}) = \begin{cases} 1 & \text{if } \tilde{\pi}_{j|i} = 0 \\ 0 & \text{if } \tilde{\pi}_{j|i} = * \\ 0 & \text{if } \tilde{\pi}_{j|i} = 1 \end{cases}$$
(6)

On the other hand, $\tilde{\pi}_{j|i}$'s depend on messages:

Aim: constructing a min. VC by including j, given all neighbours k except $i (\rightarrow$ for G_i

- a) for all $k \in N(j)$ there are min covers (of G_j !) $\bigcirc =0$ $=^*$ where k is covered (i.e. messages 0) \rightarrow for a min VC (of G_i), j should not be covered
- b) for all except k ∈ N(j) except one, there are min u o covers (of G_j !) where k is covered (i.e. trivial messages 0), one k₀ is never covered (warning message a) 1)

 \rightarrow for a min VC of G_i , either j or k_0 covered

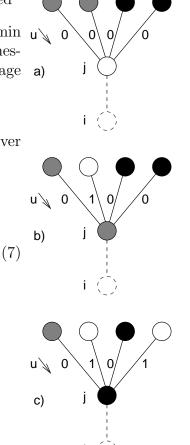
c) for at least two neighbours k_1, k_2 of j which are never covered (warning message 1) \rightarrow for a min VC of G_i, j must be covered

$$\Rightarrow \quad \tilde{\pi}_{j|i} = \begin{cases} 0 & \text{if } \sum_{k \in N(j) \setminus i} u_{k \to j} = 0 \\ * & \text{if } \sum_{k \in N(j) \setminus i} u_{k \to j} = 1 \\ 1 & \text{if } \sum_{k \in N(j) \setminus i} u_{k \to j} > 1 \end{cases}.$$

attention $u_{k\to j} = u_{k\to j}(\tilde{\pi}_{k|j})!$

Algorithm:

Initialize 2|E| warnings $u_{i\to j}$ randomly Iterate (7) and (6) until convergence



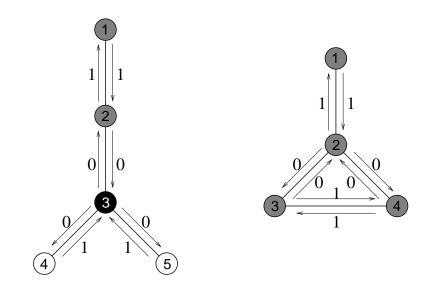
From converged cavity-graph warnings, non-cavity $\tilde{\pi}_j$ obtained in the same way, but for vertex j now all neighbours are considered:

$$\tilde{\pi}_{j} = \begin{cases} 0 & \text{if } \sum_{k \in N(j)} u_{k \to j} = 0 \\ * & \text{if } \sum_{k \in N(j)} u_{k \to j} = 1 \\ 1 & \text{if } \sum_{k \in N(j)} u_{k \to j} > 1 \end{cases}$$
(8)

<u>Decimation</u>: select one (or several) vertices l with highest $(0 < * < 1) \tilde{\pi}_l$ and cover them. Remove l and adj. edges from graph. Restart iteration of (7) and (6).

Finally: VC comes out. Is minimum if $\tilde{\pi}_j$'s are correct (might fail in presence of loops).

Example: Success and failure of warning propagation



Left side, wanted $u_{4\to3}$ 4 has no incident edges in $G_3 \to \tilde{\pi}_{4|3} = 0$ according Eq. (7) $u_{4\to3} = 1$ according Eq. (6)

Similarly $u_{5\to 3} = 1, u_{1\to 2} = 1$

For $2 \rightarrow 3$: One incoming message 1 (from 1) $\rightarrow \tilde{\pi}_{2|3} = *$ Eq. (7) $\rightarrow u_{2\rightarrow 3} = 1$ Eq. (6)

Edges leaving (3): at least one message 1 coming in $\rightarrow \tilde{\pi}_{2|3} = *, 1$ Eq. (7) $\rightarrow u_{3\rightarrow k} = 0 \forall k$ Eq. (6) For $2 \rightarrow 1$: One incoming message 0 (from 3) $\rightarrow \tilde{\pi}_{2|1} = 0$ Eq. (7) $\rightarrow u_{2\rightarrow 1} = 1$ Eq. (6) Resulting $\tilde{\pi}_i$ are gray coded Eq. (8) \rightarrow vertex 3 will be covered (which is OK) right side: a solution of the warning-propagation (check!!) \rightarrow there is no backbone \rightarrow vertex 1 could be decimated \rightarrow wrong !! (vertex 2 is ac bb \rightarrow vertex 1 is auc bb)

Note 1: Not only decimation might lead tonon-min. VC, also possible iteration does not converge (in RSB case, where many solutions exist \rightarrow different vertices converge to different non-compatible values)

Note 2: Eqs. (6), (7), (8) can be used to calculate anaytical solutions for Erdős Réyni random graphs.

4.3 Extension

• Belief Propagation (BP):

Same spirit as WP, but self-constant equations for $\pi_{j|i}, \pi_i \in [0, 1]$ Decimation of vertices with largest π_i as above.

See book.

• Survey Propagation (BP):

Assumption: \exists many solutions of self-consitent equations

- \leftrightarrow many clusters of min VCs (RSB, c > e)
- \rightarrow behavior might differ from cluster to cluster
- \rightarrow introduce
 - $\hat{\pi}_i^{(1)}:$ the fraction of clusters where vertex i takes state one
 - $-\hat{\pi}_i^{(0)}$: the fraction of clusters where vertex *i* takes state zero
 - $\hat{\pi}_i^{(1)}$: the fraction of clusters where vertex *i* takes joker state \star .

Analgous cavity quantites $\hat{\pi}_{j|i}^{(1)}$, $\hat{\pi}_{j|i}^{(0)}$ and $\hat{\pi}_{j|i}^{(*)}$. \rightarrow Again solve self-consistent equations for cavity quantities, obtain noncavity quantities +decimate

See book.