Phase transitions in combinatorial optimization problems Course at Helsinki Technical University, Finland, autumn 2007 by Alexander K. Hartmann (University of Oldenburg)

Lecture 7, 9. October 2007

### 3.8 Clustering

Usually: min. VCs not distributed uniformly in conifg space.
Clusters $:=$ (sloppy definition) groups of min. VCs that are separated by regions where no min. VCs exist.


Possible: Hierarchy of clustering
Important question: clustering related to computational hardness?
Physics: infinite hierarchy observed for spin glasses (SK model, defined on a complete, i. e., fully connected graph)
Analytically: corresponds to replica-symmetry breaking (RSB)
Ising ferromagnet: no clustering
Most models: no analytical clustering possible.
$\rightarrow$ study clustering using numerical methods. Here: VC

### 3.8.1 Neighbor-based clustering

Given: set of configurations $\left\{\underline{c}^{\alpha}\right\}\left(c_{i}^{\alpha}=1\right.$ if $i \in \operatorname{VC} \alpha, 0$ else $)$
Hamming distance

$$
\begin{equation*}
d_{\text {Hamming }}\left(\underline{c}^{\alpha}, \underline{c}^{\beta}\right)=\sum_{i}\left|c_{i}^{\alpha}-c_{i}^{\beta}\right| \tag{1}
\end{equation*}
$$

$\underline{c}^{\alpha}, \underline{c}^{\beta}$ "neigbors" $\Leftrightarrow d_{\text {Hamming }}\left(\underline{c}^{\alpha}, \underline{c}^{\beta}\right) \leq d_{\max }$. (example: VC $\left(d_{\max }=2\right)$ ).
Cluster: transitive closure of neighbour relation.

Example: Clusters for VC

$\rightarrow$ two clusters

Algorithm: grow clusters by adding neighbors, $O\left(\# \mathrm{VCs}^{2}\right)$
Assumption: Set $S$ of all VCs available
begin
$i=0$ \{number of so far detected clusters \}
while $S$ not empty do
begin

$$
i=i+1
$$

remove an element $\underline{c}^{(\alpha)}$ from $S$
set cluster $K_{i}=\left\{\underline{c}^{(\alpha)}\right\}$
set pointer $p$ to first element of $K_{i}$
while $p<>N U L L$ do
begin
for all elements $\underline{c}^{(\gamma)}$ of $S$
if $d_{\text {ham }}\left(p, \underline{c}^{(\gamma)}\right) \leq d_{\text {max }}$ then
begin
remove $\underline{c}^{(\gamma)}$ from $S$
put $\underline{c}^{(\gamma)}$ at the end of $K_{i}$
end
set pointer $p$ to next element of $K_{i}$ or to $N U L L$ if there is no more
end
end
end

Result:

corresponds to onset of RSB in analytical solution
Note: large systems: too many solutions
$\rightarrow$ generate sample using parallel tempering
then use "ballistic search" for clustering (see W. Barthel and A.K. Hartmann, "Clustering analysis of the ground-state structure of the vertex-cover problem", Phys. Rev. E 70, 066120 (2004)).
or use:

### 3.8.2 Hierarchical clustering

Aim: represent cluster structure as tree.
Input:

- Sample set of "items", e.g. configurations $\left\{c^{\alpha}\right\}$ sampled in equilibrium, or min. VCs.
- Distances $d\left(\underline{c}^{\alpha}, \underline{c}^{\beta}\right)$

Initially:

- Each item $\rightarrow$ one cluster
$K_{\alpha}:=\left\{\underline{c}^{\alpha}\right\}$ with size $n_{\alpha}=1$
- Set of clusters $S:=\left\{K_{\alpha}\right\}$
- Cluster distances ("proximiy matrix")

$$
d_{\alpha, \beta}=d\left(\underline{c}^{\alpha}, \underline{c}^{\beta}\right)
$$

Algorithm ("agglomerative clustering")

## algorithm

## begin

while there is more than one cluster do
begin
Select two clusters $K_{\alpha}, K_{\beta}$ with the minimal distance
Merge Clusters $K_{\gamma}:=K_{\alpha} \cup K_{\beta}$
for all other clusters $K_{\delta}$ do update $d_{\gamma, \delta}=\ldots$
end
end

Tree representation ("dendrogram"):

- Single items $=$ leaves
- Merge of clusters $=$ two subtrees (daughters) meet in mother node
- Length of edge of node to mother $=$ distance of its two daughters when merged

Order of leaves (not unique) $\rightarrow$ ordering of items
$\rightarrow$ Proximity matrix: grey shaded drawn with rows/colums in that order
$\rightarrow$ cluster structure becomes visible.

Example: General idea


Different choices for update function possible
Here: Ward's method

$$
\begin{equation*}
d_{\gamma, \delta}=\frac{\left(n_{\alpha}+n_{\delta}\right) d_{\alpha, \delta}+\left(n_{\beta}+n_{\delta}\right) d_{\beta, \delta}-\left(n_{\delta}\right) d_{\alpha, \beta}}{n_{\alpha}+n_{\beta}+n_{\delta}} \tag{2}
\end{equation*}
$$

Example: 4 configuration from Sec. 3.8.1

$$
\begin{gathered}
\left.\overline{S=\left\{K_{1}\right.}, K_{2}, K_{3}, K_{4}\right\}, n_{1}=1, n_{2}=1, n_{3}=1, n_{4}=1 \\
\left(d_{\gamma, \delta}\right)=\left(\begin{array}{llll}
0 & 4 & 6 & 8 \\
4 & 0 & 2 & 4 \\
6 & 2 & 0 & 2 \\
8 & 4 & 2 & 0
\end{array}\right)
\end{gathered}
$$

Iteration 1: $K_{2^{\prime}}=K_{2} \cup K_{3}, n_{2^{\prime}}=2$
$d_{2^{\prime} 1}=\frac{(1+1) 4+(1+1) 6-1 \cdot 2}{1+1+1}=\frac{18}{3}=6$
$d_{2^{\prime} 4}=\frac{(1+1) 4+(1+1) 2-1 \cdot 2}{1+1+1}=\frac{10}{3}=3.333$

$$
\Rightarrow \quad\left(d_{\gamma, \delta}\right)=\left(\begin{array}{ccc}
0 & 6 & 8 \\
6 & 0 & 10 / 3 \\
8 & 10 / 3 & 0
\end{array}\right)
$$

Iteration 2: $K_{4^{\prime}}=K_{2^{\prime}} \cup K_{4}, n_{4^{\prime}}=3$

$$
\begin{array}{r}
d_{4^{\prime} 1}=\frac{(2+1) 6+(1+1) 8-1 \cdot 10 / 3}{2+1+1}=\frac{102 / 3-10 / 3}{4}=\frac{92}{12}=\frac{23}{3} \\
\Rightarrow \quad\left(d_{\gamma, \delta}\right)=\left(\begin{array}{cc}
0 & 23 / 3 \\
23 / 3 & 0
\end{array}\right)
\end{array}
$$

Iteration 3: $K_{1^{\prime}}=K_{1} \cup K_{4^{\prime}}, n_{1^{\prime}}=4$

Results for vertex cover:

| $($ small $\mu):$ | no structure ("paramagnet") |
| :--- | :--- |
| $c<e:$ | solution cluster has no structure |
| $c>e:$ | hierarchy of solution clusters |



