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One MC sweep: exactly N tried transitions, each time randomly selecting a
vertex.
Example: compactification of a hard-core gas (N = 100 with connectivity c =
4.0): start with µ = 0, then µ is gradually increased by δµ = 0.05 up to µf = 8.
(for each µ, 10 MC sweeps) density ρ/N measured.
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One run, algorithm finds true VC, MC works fine here.
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Other ensemble: random graphs made of randomly joined tetrahedrons (cliques
of size 4):

Algorithm gets stuck in meta-stable configurations (lower density)
Reason: configuration space has a very complicated and rugged structure.
(see M. Weigt and A.K. Hartmann, “Glassy behavior induced by geometrical
frustration in a hard-core lattice gas model”, Europhys. Lett. 62, 533 (2003))

RS Analytics → obtaining local densities ρi: two solutions obtained: “liquid” (L,
ρi = ρ) and “crystal” (C, ρi = ρ1 or ρi = ρ2, ρ1 < ρ2, all neighbors j of i with
ρi = ρ2 have ρj = ρ1)

• 0 ≤ µ < µs: only L solution exists

• µs < µ < µc: L,C exists, L has higher weight

• µc < µ < µd: L,C exists, C has higher weight (L is “metastable” → super-
cooled liquid)

• µd < µ < µrsb: appearance of exponentially many glassy solutions (many
different ρi), but lower weight than L

• µrsb < µ < ∞: some glassy solutions have higher weight than L (1-RSB)
(but lower than C → only dynamics affected)

For glassy systems better algorithm, see next section.
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Figure 1: Density ρ as a function of the chemical potential µ, for p = 4, K = 3.
The full lines give analytical results for the liquid and the crystalline phases. The
spinodal and the crystallization points, as well as the dynamic and static glass
transition are marked by vertical lines (from left to right). Results are compared
with numerical compaction curves for random generalized Bethe lattices of size
N = 999, averaged over 100 graphs. Here δµ = 0.2 was used. Inset: Compaction
rate dependence for high values of µ for nMC ranging from 5000 (top) to 10.
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3.6 Parallel tempering

(also called MC3 = Metropolis-coupled Monte Carlo Markov Chain)

• C. Geyer “Monte Carlo Maximum Likelihood for Depend Data”, Proceed-
ings of the 23rd Symposium on the Interface, 156-163 (1991)

• K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)

basic idea: simulate several copies of same system, but different configurations,
at µ1 < µ2 < . . . < µn

2µ 3 nµ

. . . .

1µ µ

1 n32ν ν ν ν

1. each config: treated by MC as above (M, E moves)

2. additional: swap (S) transition: exchange configs at µk, µk+1 (k ∈ [1, n−1])

→ Allows configs to visit different µ values → overcoming energy barriers

Important: detailed balance must still hold →

S move:

1. choose k ∈ {1, 2, . . . , n − 1} randomly

2. Let ξ, ζ be configs at values µk,µk+1.

Joint probability:

Pk,k+1(ξ, ζ) =
1

Ξ̃k,k+1

χ(ξ) exp

(

µk

∑

i

ξi

)

χ(ζ) exp

(

µk+1

∑

i

ζi

)

, (1)

(Ξ̃k,k+1: normalization)

Let ∆k,k+1(ξ, ζ) ≡ (µk − µk+1)

(

∑

i

ξi −
∑

i

ζi

)

(2)

⇒ perform swap with prob.

Wk,k+1([ξ, ζ] → [ζ, ξ]) = exp(−max[∆k,k+1(ξ, ζ), 0]) . (3)

Proof of detailed balance: excercise!

In practice: choose
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• range of µ values

• number n of µs

• values of µi

• ration between S and E,N moves

Rule of thump: acceptance = 0.5 for S move.
→ N = 1000 Erdős Réyni graphs possible

3.7 Backbone

Min. VCs may be not unique → several (min.) covers V
(1)
vc , . . ., V

(K)
vc .

Backbone vertex: either (∀k = 1, . . . , K : i ∈ V
(k)
vc ) or (∀k = 1, . . . , K : i 6∈ V

(k)
vc ).

Example: Minimum vertex cover

Graph with three minimum VCs (Xc = 3)
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Backbone: Vertices 2 (always uncovered) and 3 (always covered)

Vertex 3 must be a member of all minimum VCs: If no covered all is
4> 3 = Xc neighbors must be covered. �

Obtaining backbone B:

Simple: Enumerate all solutions using B&B algorithm and check which vertices
appear with different assignments. Problem: Usually there are exponentially
many solutions.

Better: since B = Bac ∪ Bauc
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algorithm backbone(G)
begin

calculate one min cover V 1
vc of G

comment calculate always-covered backbone:
for all i ∈ V 1

vc do
if degree di = 1 then

i is not in the backbone
else
begin

create new graph G′:
remove i
for each dangling end of edges do

add one vertex at the dangling end
calculate min cover V ′

vc of G′

if |V ′

vc| > |V 1
vc| then

i is in backbone
else

i is not in backbone
end

comment Calculate always-uncovered backbone vertices:
for all vertices i which have only ac backbone neighbors:

i is in backbone (uncovered)
comment also vertices with degree 0 are backbone (uncovered)

end

Example: Backbone algorithm
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Left: one minimum cover V 1
vc

Vertices 1, 3 and 6: candidates for the ac backbone.

Middle: The modified graph G′ for vertex 1
Size of the min. VC = size of V 1

vc
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→ Vertex 1 is not backbone

Right: modified graph for vertex 3.
Min. VC than |V 1

vc|
→ vertex 3 member of Bac.

Finally Bac = {3}
Vertex 2: only one with only neighbors in Bac

→ Bauc = {2}. �

Result from simulation at xc(c)
Note: for x > xc : no backbone
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Figure 2: The total backbone size of minimum vertex covers as a
function of c. The solid line shows the analytical result. Numerical
data are represented by the error bars. They were obtained from
finite-size scaling fits similar to the calculation for xc(c). The verti-
cal line is at c = e ≈ 2.718 where the analytical results cease to be
exact.


