Phase transitions in combinatorial optimization problems

 Course at Helsinki Technical University, Finland, autumn 2007 by Alexander K. Hartmann (University of Oldenburg)Lecture 5, 2. October 2007
Announcements:

- Workshop 12. October in lecture room, 10:00-18:30
- 30-40 min per talk, 5 minutes discussion (at least ONE meaningful question per talk, before proceeding to next talk!!!!)
- Dinner afterwards (place to be announced, bill paid by lecturer)
- Submit summaries (about 5 pages printed) by 12 . October \rightarrow

Another appointment per person 15/16. October, to discuss changes to summaries

- Summaries and pdfs of talk will be put on course web page

3.5.2 Markov chains

Given system with

- finite number of configurations $\{\underline{y}\}$
- probabilities $P(\underline{y})$

Here: $\underline{y}=$ states of N vertices \rightarrow \# Configurations $\mathcal{O}\left(2^{c N}\right)$
(3) (4)
\rightarrow enumeration not feasible Usually $P(y) \in \mathcal{O}(1)$ only for few configurations, and exponentially small for most $(*)$.

Aim: measurements of averages of $A(\underline{y})$:

$$
\begin{equation*}
\langle A\rangle:=\sum_{\underline{y}} A(\underline{y}) P(\underline{y}), \tag{1}
\end{equation*}
$$

(e.g. density of hard core gas)

Simplest approach: generate randomly L configurations $\left\{\underline{y}^{i}\right\}$ (all same probability) \rightarrow

$$
\langle A\rangle \approx \bar{A}^{(a)} \equiv \sum_{\underline{y}^{i}} A\left(\underline{y}^{i}\right) P\left(\underline{y}^{i}\right) / \sum_{\underline{y}^{i}} P\left(\underline{y}^{i}\right) .
$$

$\left(^{*}\right) \rightarrow$ result very inaccurate.
Better: generate configurations, those with large probability occur more often (importance sampling).

Ideal case: distributed according $P\left(\underline{y}^{i}\right) \rightarrow$

$$
\begin{equation*}
\langle A\rangle \approx \bar{A}^{(b)} \equiv \sum_{\underline{y}^{i}} A\left(\underline{y}^{i}\right) / L . \tag{2}
\end{equation*}
$$

Direct generation according $P\left(\underline{y}^{i}\right)$ (like for Gaussian random numbers): does not work in almost all cases.
\rightarrow probabilistic dynamics generating $\underline{y}(t)(t=0,1,2, \ldots): \underline{y}(1) \rightarrow \underline{y}(2) \rightarrow \ldots$ Assumption: $\underline{y}(t+1)=f[($ pseudo $)$ random number, $\underline{y}(t)]$ (Markov chain) (MC)

Description: transitions $y(t) \rightarrow y(t+1)$ by $\underline{\text { transition probabilities }} \bar{W}_{\underline{y} \underline{z}}=\bar{W}(\underline{y} \rightarrow \underline{z})=W(\underline{y} \mid \underline{z})$ Assumpion: $W_{\underline{y} \underline{z}}$ independend of time t Properties:

$$
\begin{align*}
& W_{\underline{y} \underline{z}} \geq 0 \quad \forall \underline{y}, \underline{z} \quad \text { (positivity) } \\
& \sum_{\underline{z}} W_{\underline{y} \underline{z}}=1 \quad \forall y \quad \text { (conservation) } . \tag{3}
\end{align*}
$$

Markov process $(\mathrm{MP})=$ configurations + transition probabilities
$P(\underline{y}, t):=$ probability that MC is at time t in $\underline{y}(t)=\underline{y}$
Aim: change of probability for t to $t+1$:

- transitions out of configuration \underline{y} : decreasing contribution to $P(\underline{y}, t+1)$
- transitions into \underline{y} : increasing contribution to $P(\underline{y}, t+1)$

Master equation

$$
\begin{equation*}
\Delta P(\underline{y}, t):=P(\underline{y}, t+1)-P(\underline{y}, t)=\sum_{\underline{z}} W_{\underline{z} \underline{y}} P(\underline{z}, t)-\sum_{\underline{z}} W_{\underline{y} \underline{z}} P(\underline{y}, t) \quad \forall \underline{y} . \tag{4}
\end{equation*}
$$

Certain conditions (e.g., if there is only one eigenvalue $\lambda=1$ for the matrix ($\left.W_{\underline{y} \underline{z}}\right)$), distributions $P(\underline{y}, t)$ converges towards the stationary (time-independent) distribution

$$
P_{S T}(\underline{y}) \equiv \lim _{t \rightarrow \infty} P(\underline{y}, t)
$$

(independently of $\underline{y}(0)) \rightarrow \mathrm{MP}$ is called ergodic
meaning: one can reach each configuration from all other configurations.

$$
\text { Target: Choose } W_{\underline{y} \underline{z}} \text { such that } P_{S T}=P
$$

$P($.$) is time-independent: from Eq. (4) \rightarrow$

$$
0=\Delta P(\underline{y})=\sum_{z} W_{\underline{z} \underline{y}} P(\underline{z})-\sum_{\underline{z}} W_{\underline{y} \underline{z}} P(\underline{y}) \quad \forall \underline{y} .
$$

i.e. third condition: the "flows" of probability in and out of the configurations balance out.
One way to do it: balance holds for all pairs of configurations (detailed balance):

$$
\begin{equation*}
W_{\underline{z} \underline{y}} P(\underline{z})-W_{\underline{y} \underline{z}} P(\underline{y})=0 \quad \forall \underline{y}, \underline{z} . \tag{5}
\end{equation*}
$$

Formally: limit after $t \rightarrow \infty($ in $(\triangle))$
In practice: First equilibration: wait till $t_{\text {eq }}$. Then measuring during MC simulation
Note: $\underline{y}(t), \underline{y}(t+1)$ usually strongly correlated
\rightarrow measure "distant" configurations $\underline{y}(t), \underline{y}(t+\Delta t), \underline{y}(t+2 \Delta t), \ldots$
($\Delta t, t_{\text {eq }}$, determined within simulation, via measuring quantities and their correlations)

3.5.3 Monte Carlo for hard-core gases

Configuration $=$ vector $\underline{\nu}=\left\{\nu_{i}\right\} \quad(i \in V$

$$
\nu_{i}= \begin{cases}1 & \text { for } i \text { is occupied by a particle } \tag{6}\\ 0 & \text { else }\end{cases}
$$

$\underline{\text { Hard-core constraint }} \rightarrow \underline{\text { indicator function }}$

$$
\begin{equation*}
\chi(\underline{\nu})=\prod_{\{i, j\} \in E}\left(1-\nu_{i} \nu_{j}\right) . \tag{7}
\end{equation*}
$$

$\chi=1$ if configuration allowed.
Grand-canonical distribution (system coupled to "particle reservoir")

$$
\begin{equation*}
P(\underline{\nu})=\frac{1}{\Xi} \chi(\underline{\nu}) e^{\mu \sum_{i} \nu_{i}} \tag{8}
\end{equation*}
$$

- $\Xi=$ grand-canonical partition function (normalization constant)
- $\mu=$ chemical potential
- $n=\sum_{i} \nu_{i}=\#$ of particles.

For $\mu>0$, the higher n the higher the statistical weight.
\rightarrow for $\mu \rightarrow \infty$, only configurations with the highest density $\rho=\frac{1}{N} \sum_{i} \nu_{i}$ are obtained.
\rightarrow \# unoccupied vertices is minimized \rightarrow minimum VC (used also in analytical calculations)

Not all $W_{\underline{z} \underline{y}} \neq 0$: special types of transitions.
Here: two types: "move" (M) and "exchange" (E). For each MC step, chosen with probability $1 / 2$ each.
For both: vertex i selected randomly (prob. $1 /|V|$ each)
M If i unoccupied and exactly one neighbor j occupied \rightarrow particle at j is moved to vertex i else: nothing happens.

E If vertex $i \underline{\text { unoccupied and all neighbors unoccupied }}$ \rightarrow particle $\overline{\text { inserted at }} i$.
If some neighbors are occupied: nothing happens.

If $i \underline{\text { occ. }}$, particle removed w. prob. $\exp (-\mu)$.

