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Remarks: Outline of Talk shoould be slide-wise, i.e. few keywords per slide.

(show sample talk of myself)

Missing appointments

3.3 Numerical Results

Ensemble G(N, c/N) of random graphs:
N vertices, each poss. N(N − 1)/2 edge is present with prob. c/N .
→ c = average degree
Here: c = 2.0.
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Phase Transition
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Figure 1: Probability Pcov(x) that a VC exists for a random graph
(c = 2) as a function of the fraction x of covered vertices.
Three different system sizes N = 25, 50, 100 (averaged over 103−104

random graphs).
Left: average energy density e(x).
Inset: result for the energy in the region 0.3 ≤ x ≤ 0.5.
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Running time
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Figure 2: Time complexity of the vertex-cover algorithm = median
number of nodes visited in the configuration. N = 20, 25, 30, 35, 40,
c = 2.0. Right part (x > 0.4): Running times grows linearly. In-
set: logarithmic scale (also N = 45, 50) → time complexity grows
exponentially with N .
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Finit-Size Scaling

Determine xc(N) for different graph sizes N
fit to the data a function

xc(N) = xc + aN−b (1)

(frequently found behavior in physical systems)
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Figure 3: Finite-size scaling behavior of the critical cover size. The location of
the transition point xc(N) as a function of graph size N for different average
degree c. Inset: scaling of the correlation volume as a function of x for different
sizes. Error bars are, at most, of the order of the symbol size.

b does not depend much on the connectivity c:
b(c = 2) = 0.91(9), b(3) = 0.88(4), b(4) = 0.82(4), b(6) = 0.92(11)
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Phase diagram
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Figure 4: Phase diagram. Circles: numerical simulations. Line: ana-
lytical result. Bounds: dashed/dashed-dotted lines. Vertical line at
c = e ≈ 2.718.
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Analytical Result:

xc(c) = 1 −
2W (c) + W (c)2

2c
, (2)

W (c): Lambert-W function: W (c) exp(W (c)) = c.
Result exact until c = e ≈ 2.718: Assumption of Replica symmetry (RS) (↔
simple organisation of phase space) is true.
c > e: Replica symmetry breaking (RSB) ( ↔ complex phase space) → cannot
be calculated exactly here.

config

energy

RS

config

energy
RSB

Note: percolation at ccrit = 1.0 < e !

3.4 Leaf-Removal algorithm

Speed up for finding minimum-size VCs (optimization problem 2)

Basic idea: only full VCs wanted
→ all edges must be covered
→ all edges {i, l} to leaves l (degree 1) must be covered
→ either i or l must be covered
→ no harm in covering i, i.e. neigbours of leaves.
→ all edges incident to i are covered
→ maybe more leaves generated

algorithm leaf-removal (G = (V,E))
begin

Initialize V ′ = ∅
while there are leaves i (i. e.vertices with degree di = 1) do
begin

Let j be the neighbor of a leaf i
cover j, i. e., V ′ = V ′ ∪ {j}
Remove all edges adjacent to j from E
Remove i and j from V

end
return (V ′)

end
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Running time: O(M) (= O(N) for random graphs with fixed c)

Remaining graph: called core

Each component of core: treated with brand-and-bound algorithm.

Example: Leaf removal
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Figure 5: Example of the leaf-removal algorithm. Upper left: initial
graph, vertices 1 and 2 are leaves. Upper right: graph after the first
iteration, vertex 5 has been covered (shown in bold) and the incident
edges removed (shown with dashed line style). Bottom: graph after
second and third iteration.

Previous sample graph
Two leaves, vertices 1 and 2

Iteration 1: say vertex 5 (neighbor of 2) is covered. (edges {2, 5} and
{5, 8} are covered and removed)

It. 2: v. 3 covered (neighbor of 1) (→ edges {1, 3} and {3, 6})
→ new leaf (vertex 6)

It. 3: v. 7 covered (neighbor of 6)
→ just one egde left (i.e. two leaves 4,8)

It. 4: v. 8 covered
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→ min. VC found! �

Note: for random graphs, connectivities c < e: core is not extensive
→ core = collections of components of O(log N) (Bauer and Golinelli, Europ.
Phys. J. B 24, 339 (2001))
→ per component: running time of brand-and-bound algorithm exponential in
log N , i.e. polyonmial in N
→ min VC can be found typically in O(Nk) for c < e.

3.5 Monte Carlo (MC) simulations

General simulation approach used in (statistical) physics.
See books:

• M. E. J. Newman und G. T. Barkema, Monte Carlo Methods in Statistical Physics
(Clarendon Press, Oxford, 1999).

• D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics,
(Cambridge University Press, Cambridge 2000).

Works very well for VC on random graphs, even for large c.

Basic idea: interpret VCs as configuration of physical system, a hard-core lattice gas,
MC introduces a dynamics into the system. Idea: dynamic is guided to lead into
minimum VCs.

3.5.1 The hard-core lattice gas

Arbitrary covers Vvc on graph G = (V,E) including those larger than the mini-
mum VC:
→ at least at one end-point of any edge there is a covering mark

Define uncovered vertices as occupied by particles.

→ not allowed: particles at both endpoints of an edge particles have chemical radius of one =
a hard-core repulsion


