Phase transitions in combinatorial optimization problems Course at Helsinki Technical University, Finland, autumn 2007
by Alexander K. Hartmann (University of Oldenburg)
Lecture 4, 27. September 2007
Remarks: Outline of Talk shoould be slide-wise, i.e. few keywords per slide.
(show sample talk of myself)
Missing appointments

3.3 Numerical Results

Ensemble $\mathcal{G}(N, c / N)$ of random graphs:
N vertices, each poss. $N(N-1) / 2$ edge is present with prob. c / N.
$\rightarrow c=$ average degree
Here: $c=2.0$.

Phase Transition

Figure 1: Probability $P_{\text {cov }}(x)$ that a VC exists for a random graph $(c=2)$ as a function of the fraction x of covered vertices.
Three different system sizes $N=25,50,100$ (averaged over $10^{3}-10^{4}$ random graphs).
Left: average energy density $e(x)$.
Inset: result for the energy in the region $0.3 \leq x \leq 0.5$.

Running time

Figure 2: Time complexity of the vertex-cover algorithm $=$ median number of nodes visited in the configuration. $N=20,25,30,35,40$, $c=2.0$. Right part ($x>0.4$): Running times grows linearly. Inset: logarithmic scale (also $N=45,50) \rightarrow$ time complexity grows exponentially with N.

Finit-Size Scaling

Determine $x_{\mathrm{c}}(N)$ for different graph sizes N
fit to the data a function

$$
\begin{equation*}
x_{\mathrm{c}}(N)=x_{\mathrm{c}}+a N^{-b} \tag{1}
\end{equation*}
$$

(frequently found behavior in physical systems)

Matches well:

Figure 3: Finite-size scaling behavior of the critical cover size. The location of the transition point $x_{\mathrm{c}}(N)$ as a function of graph size N for different average degree c. Inset: scaling of the correlation volume as a function of x for different sizes. Error bars are, at most, of the order of the symbol size.
b does not depend much on the connectivity c :
$b(c=2)=0.91(9), b(3)=0.88(4), b(4)=0.82(4), b(6)=0.92(11)$

Phase diagram

Figure 4: Phase diagram. Circles: numerical simulations. Line: analytical result. Bounds: dashed/dashed-dotted lines. Vertical line at $c=e \approx 2.718$.

Analytical Result:

$$
\begin{equation*}
x_{\mathrm{c}}(c)=1-\frac{2 W(c)+W(c)^{2}}{2 c} \tag{2}
\end{equation*}
$$

$W(c)$: Lambert-W function: $W(c) \exp (W(c))=c$.
Result exact until $c=e \approx 2.718$: Assumption of Replica symmetry (RS) (\leftrightarrow simple organisation of phase space) is true.
$c>e$: Replica symmetry breaking (RSB) (\leftrightarrow complex phase space) \rightarrow cannot be calculated exactly here.

Note: percolation at $c_{\text {crit }}=1.0<e$!

3.4 Leaf-Removal algorithm

Speed up for finding minimum-size VCs (optimization problem 2)
Basic idea: only full VCs wanted
\rightarrow all edges must be covered
\rightarrow all edges $\{i, l\}$ to leaves l (degree 1) must be covered
\rightarrow either i or l must be covered
\rightarrow no harm in covering i, i.e. neigbours of leaves.
\rightarrow all edges incident to i are covered
\rightarrow maybe more leaves generated
algorithm leaf-removal $(G=(V, E))$
begin
Initialize $V^{\prime}=\emptyset$
while there are leaves i (i. e.vertices with degree $d_{i}=1$) do
begin
Let j be the neighbor of a leaf i
cover j, i. e., $V^{\prime}=V^{\prime} \cup\{j\}$
Remove all edges adjacent to j from E
Remove i and j from V
end
return $\left(V^{\prime}\right)$
end

Running time: $\mathcal{O}(M)(=O(N)$ for random graphs with fixed $c)$
Remaining graph: called core
Each component of core: treated with brand-and-bound algorithm.

Example: Leaf removal

Figure 5: Example of the leaf-removal algorithm. Upper left: initial graph, vertices 1 and 2 are leaves. Upper right: graph after the first iteration, vertex 5 has been covered (shown in bold) and the incident edges removed (shown with dashed line style). Bottom: graph after second and third iteration.

Previous sample graph
Two leaves, vertices 1 and 2

Iteration 1: say vertex 5 (neighbor of 2) is covered. (edges $\{2,5\}$ and $\{5,8\}$ are covered and removed)

It. 2: v. 3 covered (neighbor of 1$)(\rightarrow$ edges $\{1,3\}$ and $\{3,6\}$)
\rightarrow new leaf (vertex 6)

It. 3: v. 7 covered (neighbor of 6)
\rightarrow just one egde left (i.e. two leaves 4,8)
It. 4: v. 8 covered
\rightarrow min. VC found!

Note: for random graphs, connectivities $c<e$: core is not extensive
\rightarrow core $=$ collections of components of $\mathcal{O}(\log N)$ (Bauer and Golinelli, Europ. Phys. J. B 24, 339 (2001))
\rightarrow per component: running time of brand-and-bound algorithm exponential in $\log N$, i.e. polyonmial in N
\rightarrow min VC can be found typically in $\mathcal{O}\left(N^{k}\right)$ for $c<e$.

3.5 Monte Carlo (MC) simulations

General simulation approach used in (statistical) physics.
See books:

- M. E. J. Newman und G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999).
- D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, (Cambridge University Press, Cambridge 2000).

Works very well for VC on random graphs, even for large c.
Basic idea: interpret VCs as configuration of physical system, a hard-core lattice gas, MC introduces a dynamics into the system. Idea: dynamic is guided to lead into minimum VCs.

3.5.1 The hard-core lattice gas

Arbitrary covers V_{vc} on graph $G=(V, E)$ including those larger than the minimum VC:
\rightarrow at least at one end-point of any edge there is a covering mark

Define uncovered vertices as occupied by particles.
\rightarrow not allowed: particles at both endpoints of an edge particles have chemical radius of one $=$ a hard-core repulsion

