Phase transitions in combinatorial optimization problems Course at Helsinki Technical University, Finland, autumn 2007 by Alexander K. Hartmann (University of Oldenburg)

Lecture 3, 25. September 2007
Better situation for:
algorithm 2-approximation $(G=(V, E))$
begin
initialize $V_{\mathrm{vc}}=\emptyset$;
initialize $M=\emptyset$;
while there are uncovered edges (i. e., $E \neq \emptyset$) do
begin
take one arbitrary edge $\{i, j\} \in E$;
mark i and j as covered: $V_{\mathrm{vc}}=V_{\mathrm{vc}} \cup\{i, j\}$;
add $\{i, j\}$ to the matching: $M=M \cup\{\{i, j\}\}$;
remove from E all edges incident to i or j;
end;
return $\left(V_{\mathrm{vc}}\right)$;
end

Example: 2-Approximation heuristic

It. 1 (say) edge $\{3,4\} \rightarrow V_{\text {vc }}=\{3,4\}, M=\{\{3,4\}\}$
$\{1,3\},\{3,4\},\{3,6\},\{4,7\}$ and $\{4,8\}$ are covered
It. $2\{7,8\} \rightarrow V_{\text {vc }}=\{3,4,7,8\}, M=\{\{3,4\},\{7,8\}\}$ also $\{5,8\},\{6,7\}$ and $\{7,8\}$ are covered
It. 3 Only edge $\{2,5\}$ is left $\rightarrow V_{\mathrm{vc}}=\{2,3,4,5,7,8\}, M=\{\{3,4\},\{7,8\},\{2,5\}\}$.

Note 1: For order $\{1,3\},\{2,5\},\{6,7\}$ and $\{4,8\} V_{v c}=V$ twice the size of minimum VC.

Note 2: never be able to "find" the minimum VC: e.g., $V_{\mathrm{vc}}^{\min }=$ $\{3,5,7,8\}$.

Theorem: size $\left|V_{\mathrm{vc}}\right| \leq 2\left|V_{\mathrm{vc}}^{\min }\right|$.

Proof:

Algorithm also constructs matching M. Since two vertices in V_{vc} for each edge in $M \rightarrow$

$$
\begin{equation*}
\left|V_{\mathrm{vc}}\right|=2|M| . \tag{1}
\end{equation*}
$$

Since (by Def. of matching): the edges in M do not "touch" each other, one has to cover at least one vertex per edge of $M . \rightarrow$

$$
\begin{equation*}
\left|V_{\mathrm{vc}}^{\min }\right| \geq|M| . \tag{2}
\end{equation*}
$$

Combining Eqs (1) and (2) we get $\left|V_{\mathrm{vc}}\right|=2|M| \leq 2\left|V_{\mathrm{vc}}^{\min }\right|$.

3.2 Branch-and-bound algorithm

Finds exact minimum VC (optimization problem 2)
(Remark: if in algorithm a vertex i is (temporarily) covered, we say we put a covering mark on it. Vertices not decided yet (cov/uncov): free)

Basic idea: 2^{N} possible configurations $\in\{\text { cov, uncov }\}^{N}$
\rightarrow binary configuration tree
\rightarrow algorithms builds tree node by node (via backtracking) and determines smallest VC

\rightarrow For sure exponential running time.
Speedup: omit subtrees if possible:

- No further descent if VC has been found.
- Cover neighbours of uncovered vertices.
- Bound. Store:
- best: size of the smallest VC found so far (initially best $=N$).
- X number of vertices covered so far
- current degrees of free vertices d_{i}.

Ordered $d_{o_{1}} \geq d_{o_{2}} \geq \ldots d_{o_{N^{\prime}}}$
$F:=b e s t-X$ available number of covering marks note: if only ONE best solution is to be obtained, one can use $F=$ best $-X-1$

Example:
$F=3$

i	d_{i}
5	7

236

$12 \quad 6$
$33 \quad 6$

25
$D:=\sum_{l=1}^{F} d_{o_{l}}$ best one can achieve with F marks $\quad \vdots \quad \vdots$ if $D<\#$ current uncovered edges then bound!
algorithm branch-and-bound $(G$, best, X)
begin
if all edges are covered then
begin
if $X<$ best then best $:=X$
return;
end;
calculate $F=$ best $-X ; D=\sum_{l=1}^{F} d_{l}$;
if $D<$ number of uncovered edges then
return; comment bound;
take one free vertex i with the largest current degree d_{i};
mark i as covered; comment left subtree
$X:=X+1 ;$
remove from E all edges $\{i, j\}$ incident to i;
branch-and-bound $(G$, best, $X)$;
reinsert all edges $\{i, j\}$ which have been removed;
$X:=X-1$;
if ($F \geq$ number of current neighbors) then
begin
comment right subtree;
mark i as uncovered;
for all neighbors j of i do
begin
mark j as covered; $X:=X+1$; remove from E all edges $\{j, k\}$ incident to j;
end;
branch-and-bound (G, best, X);
for all neighbors j of i do mark j as free; $X:=X-1$;
reinsert all edges $\{j, k\}$ which have been removed;
end;
mark i as free;

return;

end

first call: branch-and-bound $(G$, best, 0$)$.

Example: Branch-and-bound algorithm
Graph from Ex. for heuristic.
First descent: exactly as the heuristics. \rightarrow Fig. (graph and the corresponding current configuration tree): best $:=4$.

Algorithm \rightarrow preceding level of the configuration tree. Vertex 8: uncovered. All its uncovered neighbours: covered (vertex 4) \rightarrow

vc

Next (recursive) call: Again full VC, but not smaller \rightarrow backtracking.
Vertex 8 is free again, backtracking
Vertex 5:uncovered \rightarrow its neighbours (2 and 8): covered

Next call: Again full VC, but not smaller \rightarrow backtracking.
Vertex 5 is free again, backtracking
Vertex 7: uncovered, its neighbours, (4, 6 and 8): covered,

Next call: no cover yet (edge $\{2,5\}$ is uncovered) \rightarrow bound is evalated:
$X=4 \rightarrow F=$ best $-X=0 \rightarrow D=0<\#$ uncovered edges. \rightarrow bound! \rightarrow (no subtree) backtracking

Vertex 7 is free again, backtracking \rightarrow top level

Vertex 3: uncovered, its neighbours, $(1,4,6)$: covered,

next call: no cover yet \rightarrow bound evaluated: $X=3 \rightarrow F=$ best $-X=$ $4-3=1$: Vertex 8 has the highest current degree $d_{8}=2$, hence $D=2$ $<\#$ of uncovered edges is $3 . \rightarrow$ bound! \rightarrow (no subtree) backtracking
\rightarrow algorithm finishes.
Note: configuration tree has 18 nodes, compared to 511 nodes (with $2^{8}=256$ leaves) of full configuration tree.

Implementation : for fast access the F vertices of largest current degree (sublinear N treatment) \rightarrow
two arrays v_{1}, v_{2} of sets of vertices indexed by the current degrees.
v_{1} : top F free vertices
v_{2} : other free vertices
also store for each vertex: pointer to current set
insert/remove when free \leftrightarrow covered, uncovered
also lowest entry $v_{1} \leftrightarrow$ top entry v_{2}

Algorithm for optimization problem 1:
$\tilde{X}=\left|V_{\mathrm{vc}}\right|$ is given.
best: smallest number of uncovered edges (i. e., the energy) so far.
$F=\tilde{X}-X$ additional vertices coverable.
Again $D=\sum_{l=1}^{F} d_{O_{l}}$: sum of highest degrees.
If best \leq (current \# of uncovered edges)- $D \rightarrow$ bound!
(note: NO automatic covering of neighbors!)
stop if best $=0$

