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Better situation for:

algorithm 2-approximation(G = (V,E))
begin

initialize Vvc = ∅;
initialize M = ∅;
while there are uncovered edges (i. e., E 6= ∅) do
begin

take one arbitrary edge {i, j} ∈ E;
mark i and j as covered : Vvc = Vvc ∪ {i, j};
add {i, j} to the matching: M = M ∪ {{i, j}};
remove from E all edges incident to i or j;

end;
return(Vvc);

end

Example: 2-Approximation heuristic

It. 1 (say) edge {3, 4} → Vvc = {3, 4}, M = {{3, 4}}
{1, 3}, {3, 4}, {3, 6}, {4, 7} and {4, 8} are covered

It. 2 {7, 8} → Vvc = {3, 4, 7, 8}, M = {{3, 4}, {7, 8}}
also {5, 8}, {6, 7} and {7, 8} are covered

It. 3 Only edge {2, 5} is left → Vvc = {2, 3, 4, 5, 7, 8}, M = {{3, 4}, {7, 8}, {2, 5}}.
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Note 1: For order {1, 3}, {2, 5}, {6, 7} and {4, 8} Vvc = V twice the
size of minimum VC.

Note 2: never be able to “find” the minimum VC: e. g., V min

vc
=

{3, 5, 7, 8}. �

Theorem: size |Vvc| ≤ 2|V min

vc
|.

Proof:
Algorithm also constructs matching M . Since two vertices in Vvc for each edge
in M →

|Vvc| = 2|M | . (1)

Since (by Def. of matching): the edges in M do not “touch” each other, one has
to cover at least one vertex per edge of M . →

|V min

vc
| ≥ |M | . (2)

Combining Eqs (1) and (2) we get |Vvc| = 2|M | ≤ 2|V min

vc
| . QED

3.2 Branch-and-bound algorithm

Finds exact minimum VC (optimization problem 2)

(Remark: if in algorithm a vertex i is (temporarily) covered, we say we put a covering mark
on it. Vertices not decided yet (cov/uncov): free)

Basic idea: 2N possible configurations ∈ {cov, uncov}N

→ binary configuration tree
→ algorithms builds tree node by node (via backtracking) and determines small-
est VC
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→ For sure exponential running time.
Speedup: omit subtrees if possible:



Phase Transitions in Optimzation Problems, A.K. Hartmann 3

• No further descent if VC has been found.

• Cover neighbours of uncovered vertices.

• Bound. Store:

– best : size of the smallest VC found so far (ini-
tially best = N).

– X number of vertices covered so far

– current degrees of free vertices di.
Ordered do1

≥ do2
≥ . . . do

N′

F :=best-X available number of covering marks
note: if only ONE best solution is to be obtained,
one can use F = best − X − 1

D :=
∑

F

l=1
dol

best one can achieve with F marks
if D < # current uncovered edges then bound!

Example:
F = 3
i di

5 7
23 6
12 6
33 6
2 5
...

...
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algorithm branch-and-bound(G, best, X)

begin

if all edges are covered then

begin

if X < best then best := X

return;

end;

calculate F = best − X ; D =
∑F

l=1 dl;

if D < number of uncovered edges then

return; comment bound;

take one free vertex i with the largest current degree di;

mark i as covered; comment left subtree

X := X + 1;

remove from E all edges {i, j} incident to i;

branch-and-bound(G, best, X);

reinsert all edges {i, j} which have been removed;

X := X − 1;

if (F ≥ number of current neighbors) then

begin comment right subtree;

mark i as uncovered;

for all neighbors j of i do

begin

mark j as covered; X := X + 1;

remove from E all edges {j, k} incident to j;

end;

branch-and-bound(G, best, X);

for all neighbors j of i do

mark j as free; X := X − 1;

reinsert all edges {j, k} which have been removed;

end;

mark i as free;
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return;

end

first call: branch-and-bound(G, best,0).

Example: Branch-and-bound algorithm

Graph from Ex. for heuristic.

First descent: exactly as the heuristics. → Fig. ( graph and the
corresponding current configuration tree): best := 4.
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Algorithm → preceding level of the configuration tree. Vertex 8: un-

covered . All its uncovered neighbours: covered (vertex 4) →
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Next (recursive) call: Again full VC, but not smaller → backtracking.

Vertex 8 is free again, backtracking
Vertex 5:uncovered → its neighbours (2 and 8): covered
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Next call: Again full VC, but not smaller → backtracking.

Vertex 5 is free again, backtracking
Vertex 7: uncovered, its neighbours, (4, 6 and 8): covered,
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Next call: no cover yet (edge {2, 5} is uncovered) → bound is evalated:
X = 4 → F = best − X = 0 → D = 0 < # uncovered edges. →
bound! →(no subtree) backtracking

Vertex 7 is free again, backtracking → top level

Vertex 3: uncovered, its neighbours, (1, 4, 6): covered,
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next call: no cover yet → bound evaluated: X = 3 → F = best−X =
4−3 = 1: Vertex 8 has the highest current degree d8 = 2, hence D = 2
< # of uncovered edges is 3. → bound! →(no subtree) backtracking

→ algorithm finishes.

Note: configuration tree has 18 nodes, compared to 511 nodes (with
28 = 256 leaves) of full configuration tree. �

Implementation : for fast access the F vertices of largest current degree (sublin-
ear N treatment) →
two arrays v1, v2 of sets of vertices indexed by the current degrees.
v1: top F free vertices
v2: other free vertices
also store for each vertex: pointer to current set
insert/remove when free ↔ covered,uncovered

also lowest entry v1 ↔ top entry v2

Algorithm for optimization problem 1:
X̃ = |Vvc| is given.
best: smallest number of uncovered edges (i. e., the energy) so far.
F = X̃ − X additional vertices coverable.
Again D =

∑
F

l=1
dOl

: sum of highest degrees.
If best ≤ (current # of uncovered edges)-D → bound !
(note: NO automatic covering of neighbors!)
stop if best = 0


