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Maximum Satisfiability - Outline

Goal: A factor 3
4 approximation algorithm for MAX-SAT.

Problem definitions.

A factor 1
2 approximation algorithm for MAX-SAT.

A factor 1− 1
e approximation algorithm for MAX-SAT

Combining the two to obtain the approximation factor 3
4 .
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Maximum Satisfiability Problem (MAX-SAT)

Given a conjunctive normal form formula F on Boolean
variables x1, ..., xn, and non-negative weights, wc, for each
clause c of F , find a truth assignment to the variables that
maximizes the total weight of satisfied clauses.

F =
∧

c∈C c with C the set of clauses.

size(c) is the length of clause c.

MAX-SAT is NP-hard.
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Restricted MAX-SAT: MAX-kSAT

For any positive integer k, MAX-kSAT is the restriction of
MAX-SAT to instances in which each clause has
size(c) ≤ k.

MAX-2SAT is NP-hard.

Note that 2SAT is in P !
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Common notation

Random variable W denotes the total weight of satisfied
clauses.

Random variable Wc denotes the weight contributed by c
to W.

W =
∑

c∈C Wc

E[Wc] = wc · Pr[c is satisfied]
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“Trivial” randomized algorithm

Generate a variable assignment τ in which each variable is set
to True with probability 1

2 , or False otherwise.

Lemma
If size(c) = k and αk = 1− 2−k then E[Wc] = αkwc

Proof.
Clause c is not satisfied by τ if all of its literals are set to False.
The probability of that event is αk (= 1− 2−k)
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Expectation lowerbound for the randomized algorithm

For k ≥ 1 it holds that αk = 1− 2−k ≥ 1
2 , so:

E[W] =
∑
c∈C

E[Wc] ≥
1
2

∑
c∈C

wc ≥
1
2
OPT

Note that if each clause has size(c) ≥ 2 then E[W] ≥ 3
4OPT.
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Derandomizing the suggested algorithm (1)

Lemma
The conditional expectation of any node in the self-reducibility
tree of F can be computed in polynomial time.

Proof.
Consider a node corresponding to partial assignment
x1 = a1, ..., xi = ai. Let φ be the Boolean formula on variables
xi+1, ..., xn obtained for this node. The expected weight of
satisfied clauses of φ under a random truth assignment can be
computed in polynomial time. Adding to this the total weight
of clauses of F already satisfied by the partial assignment
x1 = a1, ..., xn = an gives the answer.
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Derandomizing the suggested algorithm (2)

Lemma
A path from the root to a leaf such that the conditional
expectation of each node on this path is ≥ E[W] can be
calculated in polynomial time.

Proof.
The conditional expectation of a node is the average conditional
expectiation of its children. So, the child with the highest
conditional expectation of the two has a conditional expectation
at least as large as its parent. This proofs that the desired path
exists. By the previous lemma we can compute the conditional
expectation of any node in the tree in polynomial time this
lemma follows.
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The derandomization of the suggested algorithm

1. Compute a path from the root to a leaf such that the
conditional expectation of each node on this path is
≥ E[W].

2. Output the truth assignment τ found at the leaf node of
the computed path.
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Definitions for an integer program for MAX-SAT

We will continue to introduce and integer program for
MAX-SAT and a second randomized algorithm using its
LP-relaxation.

For all c ∈ C:
Let S+

c be the set of variables occuring nonnegated in c.

Let S−c be the set of variables occuring negated in c.

Let yi = 1 denote setting xi = True, and yi = 0 denote
xi = False.
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An integer program for MAX-SAT

maximize
∑

c∈C wczc

subject to ∀c ∈ C:
∑

i∈S+
c

yi +
∑

i∈S−c
(1− yi) ≥ zc

∀c ∈ C: zc ∈ {0, 1}

∀i : yi ∈ {0, 1}
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LP-Relaxation of the integer program for MAX-SAT

maximize
∑

c∈C wczc

subject to ∀c ∈ C:
∑

i∈S+
c

yi +
∑

i∈S−c
(1− yi) ≥ zc

∀c ∈ C: 1 ≥ zc ≥ 0

∀i : 1 ≥ yi ≥ 0
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Using the LP relaxation

The second randomized algorithm for MAX-SAT:

Solve the LP program introduced on the previous slide.

Let (y∗, z∗) denote the optimal solution.

Set xi to True with probability y∗i for 1 ≤ i ≤ n.

Output the resulting truth assignment τ .
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Expectation lowerbound for the second randomized
algorithm (1)

Recall the random variables W and Wc:

E[Wc] = wc · Pr[c is satisfied]

W =
∑

c∈C Wc

Define for k > 1:

βk = 1−
(

1− 1
k

)k
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Expectation lowerbound for the second randomized
algorithm (2)

Lemma
If size(c) = k then E[Wc] ≥ βkwcz∗c .

Proof
Without loss of generality assume that all literals in clause c
occur nonnegated. By renaming variables assume that
c = (x1 ∨ ... ∨ xk). Clause c is satisfied if not all x1, ..., xn are
set to False.
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Expectation lowerbound for the second randomized
algorithm (3)

Proof (continued).

The probability of c being satisfied is:

1−
k∏

i=1

(1− yi) ≥ 1−

(∑k
i=1 (1− yi)

k

)k

≥ 1−
(

1− z∗c
k

)k

The arithmic-geometric mean inequality states for nonnegative
a1, ..., ak:

a1 + ... + ak

k
≥ k
√

a1 · ... · ak

(
a1 + ... + ak

k

)k

≥ a1 · ... · ak
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Expectation lowerbound for the second randomized
algorithm (4)

Proof (continued).

The probability of c being satisfied is ≥ 1−
(
1− z∗c

k

)k
.

Consider a function g defined as g(z) = 1−
(
1− z

k

)k.
Recall βk = 1−

(
1− 1

k

)k.
For z ∈ [0, 1] it holds that g(z) ≥ βkz.

Therefore Pr[c is satisfied] ≥ βkz∗c , so E[Wc] ≥ βkwcz∗c .
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Expectation lowerbound for the second randomized
algorithm (5)

E[Wc] ≥ βkwcz∗c

As βk is a decreasing function of k:

E[W] =
∑
c∈C

E[Wc] ≥ βk

∑
c∈C

wcz∗c = βkOPTf ≥ βkOPT.

After derandomization this is a βk factor approximation
algorithm for MAX-kSAT.

∀k ∈ Z+ :
(
1− 1

k

)k
> 1

e

So, this is a 1− 1
e factor approximation algorithm for

MAX-SAT.
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A randomized E[W] ≥ 3
4OPT algorithm

Let b be the flip of a fair coin. If b = 0 use the first randomized
algorithm, if b = 1 use the second randomized algorithm.

E[Wc | b = 0] ≥ αkwc ≥ αkwcz∗c .
E[Wc | b = 1] ≥ βkwcz∗c .

E[Wc] =
1
2
(E[Wc | b = 0] + E[Wc | b = 1]) ≥ wcz∗c

αk + βk

2
.

α1 + β1 = α2 + β2 = 3
2 , and for k ≥ 3:

αk + βk ≥ 7
8 + (1− 1

e ) ≥
3
2 . E[W] ≥ 3

4OPT.
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A deterministic factor 3
4 approximation algorithm

1. Use the derandomized factor 1
2 algorithm to get a truth

assignment τ1.

2. Use the derandomized factor 1− 1
e algorithm to get a truth

assignment τ2.

3. Output the better of the two assignments.

One of the two conditional expressions E[W | b = 0] and
E[W | b = 1] is at least as large as E[W]. So, the total weight of
clauses satisfied by the better of τ1 and τ2 is at least E[W].
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Scheduling - Outline

Problem defintions.

Relation with Petri’s earlier talk.

Problematic LP relaxation of integer program.

Useful graph theory concepts.

Proof of approximation factor 2.
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Scheduling on unrelated parallel machines

Given:

A set J of jobs.

A set M of machines.

A pij ∈ Z+ for each j ∈ J and i ∈ M.

Where pij is the time it takes to execute job j on machine i.

Schedule the jobs on the machines such that the makespan, e.g.
the maximum processing time of any machine, is minimized.
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Didn’t we study this before?

No, we didn’t...

These machines are unrelated as there is no relation
between how long a job takes on one machine, and how
long it might take on another machine.

If for all i ∈ M the value of pij is the same then the
machines are said to be identical. For the restricted
problem of scheduling on identical machines a PTAS exists
as was discussed by Petri.

For the generalization of minimum makespan to uniform
machines a PTAS also exists. In that case all machines
have a speed si associated with them and the processing
time for job j on machine i is pj

si
.
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An integer program

Let xij denote whether job j is scheduled on machine i.

minimize t

subject to
∑

i∈M xij = 1, j ∈ J∑
j∈J xijpij ≤ t, i ∈ M

xij ∈ {0, 1}, i ∈ M, j ∈ J

This integer program has unbounded integrality gap.
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Unbounded integrality gap - example

Suppose there is only one job, with processing time m on each
of the m machines. The minimum makespan is thus m.

The optimal solution to the linear relaxation of the suggested
integer program is to schedule a fraction 1

m of the job on each of
the m machines, which leads to t = 1. The integrality gap is
thus m.
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Bounding the integrality gap

The integrality gap of the LP relaxation would be bounded
if we could add the following constraint:

∀i ∈ M j ∈ J: if pij > t then xij = 0.

That is unfortunately not possible as it is not a linear
constraint.

We will parametrize the integer program and use
parametric pruning instead.

Parameter T ∈ Z+ a guess for a lower bound on the
optimal makespan.



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Parametrized integer program

Define: ST = { (i, j) | pij ≤ T }

And a family of linear programs LP(T):∑
i:(i,j)∈ST

xij = 1, j ∈ J∑
j:(i,j)∈ST

xijpij ≤ T, i ∈ M

xij ≤ 0, (i, j) ∈ ST

Using binary search we can find the smallest value of T for
which LP(T) has a feasible solution. Let this value be T∗.
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Using extreme point solutions (1)

Let r = |ST|, the number of variables on which LP(T) is
defined.
A feasible solution to LP(T) is an extreme point solution iff
it corresponds to setting r lineary independent constraints
to equality.

Lemma
Any extreme point solution to LP(T) has at most n + m
nonzero variables.

Proof.
An extreme point solution has r lineary indepentend
constraint to equality. Of these at least r− (n + m) must be
of the form xij ≤ 0. The corresponding variables must be set
to 0. So, at most n + m variables might be set to a nonzero
value.
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Using extreme point solutions (2)

Lemma
Any extreme point solution to LP(T) must set at least n−m
jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).
Let α be the number of jobs set integrally by x.
Let β be the number of jobs set fractionally by x.
Each of the β jobs is assigned to at least two machines and
therefore results in at least two nonzero entries in x.

α + β = n α + 2β ≤ n + m

Therefore, β ≤ m and α ≥ n−m.
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LP-Rounding algorithm: Graph construction

Consider extreme point solution x in LP(T).

Define G = (J,M,E) to be the biparite graph on vertex
J ∪M such that (j, i) ∈ E iff xij 6= 0.

Let F ⊂ J be the set of jobs that are fractionally set in x.

Let H be the subgraph of G induced on vertices F ∪M.

So, (i, j) is an edge in H if 0 < xij < 1.

Graph H has a perfect matching, that is a matching that
matches every job j ∈ F (proof follows).
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Approximation algortithm

Let α be the makespan found by a greedy algorithm.

1. By a binary search in the interval [ α
m , α], find the smallest

value of T ∈ Z+ for which LP(T) has a feasible solution.
Let this value be T∗.

2. Find an extreme point solution x to LP(T∗).

3. Assign all integrally set jobs to machines as in x.

4. Construct the graph H and find a perfect matching M in it
(construction follows).

5. Assign fractionally set jobs to machines according to
matching M.
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Graph theory definitions

A connected graph on a vertex set V is a pseudo-tree if it
contains at most |V| edges.

So, it is either a tree or a tree plus one edge.

A tree plus one edge has unique cycle.

A graph is a pseudo-forest if each of its connected
components is a pseudo-tree.
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Lemma on graph G

Lemma
Graph G is a pseudo-forest.

Proof.

To prove this we show the number of edges in each
connected component of G is bounded by the number of
vertices in it.
Consider a connected component Gc in G.
Restrict LP(T) and its extreme point solution x to the jobs
and machines in Gc only, to obtain LPc(T) and xc.
xc must be an extreme point solution to LP(T).
As any extreme point solution has at most n + m nonzero
variables the lemma follows.
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Lemma on graph H (1)

Lemma
Graph H has a perfect matching.

Proof

Each job that is integrally set in x has exactly one edge
incident at it in G.

Remove these jobs, and their incident edges from G to
obtain H.

As the number of edges and vertices removed is equal H is
also a pseudo-forest.

In H each job has a degree of at least 2, so all leave nodes
are machines.
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Lemma on graph H (2)

Proof (continued).

Keep matching a leaf with the job it is incident to, and
remove both from the graph.

We are left with even cycles. Match of the alternate edges
of each cycle.

We have now obtained a perfect matching in H.
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Approximation factor

Lemma
The presented algorithm achieves approximation factor 2 for
scheduling on unrelated parallel machines.

Proof.

T∗ ≤ OPT, since LP(OPT) has a feasible solution.
The extreme point solution x to LP(T∗) has a fractional
makespan of ≤ T∗.
The restriction of x to integrally set jobs has an integral
makespan of ≤ T∗.
Each edge (i, j) of H satisfies pij ≤ T∗.
The perfect matching found in H schedules at most one
extra job per machine.
So, the total makespan is ≤ 2T∗ ≤ 2 ·OPT.
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Summary

We have seen a factor 3
4 approximation algorithm for

MAX-SAT.

Derandomization of randomized algorithms was used to
obtain that algorithm.

We have seen a factor 2 approximation algorithm for
schedulling on unrelated parallel machines.

Parametric pruning and the properties of extreme point
solutions where used to obtain that algorith.

Note: For minimum makespan scheduling on identical
machines this approximation guarantee was reached using
an almost trivial algorithm.
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