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Set Cover

Given:

A universe U of n elements.

A collection of subsets of U , S = {S1, ...,Sk}.

A cost function c : S→ Q+.

Find a minimum cost subcollection of S that covers all ele-

ments of U .
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Set Cover - Example

U = {1,2,3,4,5}

S = {S1,S2,S3}

S1 = {4,1,3}
S2 = {2,5}
S3 = {1,4,3,2}

c : S→ Q+

c(S1) = 5
c(S2) = 10
c(S3) = 3
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U = {1,2,3,4,5} S1∪S2 ⊆ U
S2∪S3 ⊆ U

S = {S1,S2,S3}

S1 = {4,1,3} c(S1)+ c(S2) = 15
S2 = {2,5} c(S2)+ c(S3) = 13
S3 = {1,4,3,2}
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Set Cover - Example

U = {1,2,3,4,5} S1∪S2 ⊆ U
S2∪S3 ⊆ U

S = {S1,S2,S3}

S1 = {4,1,3} c(S1)+ c(S2) = 15
S2 = {2,5} c(S2)+ c(S3) = 13
S3 = {1,4,3,2}

So S2∪S3 is a set
c : S→ Q+ cover for U

c(S1) = 5
c(S2) = 10
c(S3) = 3
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Set Cover - Greedy algorithm 1/4

cost(s)
|S−C| is the cost-effectiveness of a set S.

1 C← /0

2 While C 6= U do

Find the set S with the highest α = cost(s)
|S−C|

For all e ∈ S−C, set price(e) = α.

C←C∪S.

3 Output the picked sets.

Number the elements e of U in the order in which they

where covered, e1, ...,ek.
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Set Cover - Greedy algorithm 2/4

Lemma 2.3 For each k ∈ {1, ...,n}, price(ek)≤
OPT

n−k+1.

Proof In every iteration the leftover sets of the optimal
solution can cover the remaining elements at a cost of at
most OPT . Therefore, amongst those sets there must be
an element with cost at most OPT

|C|
with C the set of

uncovered elements. C contains at least n− k +1
elements.

price(ek)≤
OPT

|C|
≤

OPT
n− k +1

�
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Set Cover - Greedy algorithm 3/4

Theorem 2.4 The greedy algorithm is an Hn factor
approximation algorithm for the minimum set cover
problem, where Hn = 1+ 1

2 + · · ·+ 1
n .

Proof The total cost is equal to ∑n
k=1 price(ek). By

Lemma 2.3, this is at most (1+ 1
2 + · · ·+ 1

n) ·OPT .

�
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Set Cover - Greedy algorithm 4/4

books.google.com (first 20 pages)
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Vertex Cover

The vertex cover problem is a special case of set
cover with the highest element occurence frequency
f = 2.

For vertex cover there is a factor 2 approximation.

Set cover approximation algorithms, either factor
O(log n) or f .
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Vertex Cover as Set Cover

Consider a graph G = (V,E) with:

V = { V1, V2, V3 }

E = { (1,2), (2,3), (1,3) }

We might define each vertex by the set of edges
connected to it. Now we have a set cover problem with:

U = { (1,2), (2,3), (1,3) }

S =
{ { (1,2), (1,3) }, { (1,2), (2,3) }, { (2,3), (1,3) } }

Approximation Algorithms Seminar 1 – 10/27



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Set Cover - Layering algorithm

Factor f approximation algorithm for set cover.

Let w : V → Q+ be the function assigning weights to
the vertices of a graph G = (V,E).

A weight function is degree-weighted if there is a
constant c > 0 such that the weight of each vertex
v ∈V is c ·deg(v).
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Set Cover - Layering algorithm

Lemma 2.6 Let w : V → Q+ be a degree-weighted
function. Then the cost of selecting all vertices
w(V )≤ 2·OPT .

Proof Let c be the constant such that w(v) = c ·deg(v),
and let U be an optimal vertex cover in G.

∑
v∈U

deg(v)≥ |E| w(U)≥ c|E|

The sum of the degree of all vertices of a graph is 2|E| so
w(V ) = 2c|E| ≤ 2·OPT .

�
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Vertex Cover - Layering algorithm

1 G0 = G, k = 0

2 while Gk = (V,E) has vertices v ∈V with deg(v) > 0

3 c = min
(

w(v)
deg(v)

)

over all v ∈V with deg(v) > 0

4 Dk = { v | v ∈V and deg(v) = 0 }

5 Wk = { v | v ∈V and w(v) = c ·deg(v) }

6 Gk+1 = the graph induced on V − (Dk∪Wk)

7 k = k +1

8 return C = W0∪· · ·∪Wk−1
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Vertex Cover - Layering algorithm

1 G0 = G, k = 0

2 while Gk = (V,E) has vertices v ∈V with deg(v) > 0

3 c = min
(

w(v)
deg(v)

)

over all v ∈V with deg(v) > 0

4 Dk = { v | v ∈V and deg(v) = 0 }

5 Wk = { v | v ∈V and w(v) = c ·deg(v) }

6a Vk+1 = V − (Dk∪Wk)

6b Ek+1 = E−{ (i, j) | i ∈ (Dk∪Wk) or j ∈ (Dk ∪Wk) }

6c Gk+1 = (Vk+1,Ek+1)

7 k = k +1

8 return C = W0∪· · ·∪Wk−1
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Vertex Cover - Layering algorithm

1 G0 = G, k = 0

2 while Gk = (V,E) has vertices v ∈V with deg(v) > 0

3 c = min
(

w(v)
deg(v)

)

over all v ∈V with deg(v) > 0 tk(v) = c ·deg(v)

4 Dk = { v | v ∈V and deg(v) = 0 }

5 Wk = { v | v ∈V and w(v) = c ·deg(v) }

6a Vk+1 = V − (Dk∪Wk)

6b Ek+1 = E−{ (i, j) | i ∈ (Dk∪Wk) or j ∈ (Dk ∪Wk) }

6c Gk+1 = (Vk+1,Ek+1)

7 k = k +1

8 return C = W0∪· · ·∪Wk−1
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Layering algorithm - Proof ?

Consider a vertex v ∈C. If v ∈W j, its weight can be
decomposed as:

w(v) = ∑
i≤ j

ti(v) ????

Approximation Algorithms Seminar 1 – 14/27



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Set Cover - Layering algorithm

1 U0 = U , S0 = S, k = 0

2 while Sk has elements s with |s|> 0

3 c = min
(

w(s)
|s|

)

over all s ∈ Sk with |s|> 0

4 Dk = { s | s ∈ Sk and |s|= 0 }

5 Wk = { s | s ∈ Sk and w(s) = c|s| }

6a Uk+1 = U− (Dk∪Wk)

6b Sk+1 = { s′ | s ∈ Sk, s′ = s− (Dk ∪Wk) }

7 k = k +1

8 return C = W0∪· · ·∪Wk−1
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Steiner Tree

Given:

An undirected graph G = (V,E) with nonnegative
edge cost.

A partitioning of the vertices V into required, and
Steiner edges.

Find a minimum cost tree in G that contains all the required

vertices and any subset of Steiner vertices.
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Metric Steiner Tree

A restriction of the Steiner Tree problem to those graphs
that satisfy the triangle inequality. That is, G has to be a
complete undirected graph, and for any three vertices u, v
and w, cost(u,v)≤ cost(u,w)+ cost(v,w).

Theorem 3.2 There is an approximation factor preserv-

ing reduction from the Steiner tree problem to the metric

Steiner tree problem.
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Metric Steiner Tree↔ MST

Theorem 3.3 The cost of a Minimal Spanning Tree on the

required vertices is within 2·OPT .

Approximation Algorithms Seminar 1 – 18/27



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Traveling salesman problem (TSP)

Given a complete graph with nonnegative edge costs, find
a minimum cost cycle visiting evey vertex exactly once.

Theorem 3.6 For any polynomial computable function

α(n), TSP can not be approximated within a factor of α(n),

unless P = NP.
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Traveling salesman problem (TSP)

Proof Using a polynomial factor α(n) approximation
algorithm for TSP we can decide the Hamiltonian cycle
problem which is NP-Hard in polynomial time. The
existence of such an algorithm would therefore imply that
P = NP.

(continued)
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Traveling salesman problem (TSP)

Reduction of Hamiltonian Cycle to polynomial factor
approximation of TSP.

Assign a weight of 1 to edges of G. Extend G to the
complete graph G′ and give all added "nonedges" weight
α(n) ·n. If G has a Hamiltonian cycle, then the
corresponding tour in G′ has cost n.

If G has no Hamiltonian cycle, any tour in G′ must use an
edge of cost α(n) ·n and it therefore has cost > α(n) ·n.

�
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Metric TSP - Factor 2 approx.

The proof on the previous slide used edge weights
that did not satisfy the triangle inequality.

Metric TSP is also NP-Complete, but not hard to
approximate.

Cost of a MST is ≤ OPT .

Factor 2 approximation algorithm by using similar
approach as in proof of Steiner Tree algorithm
approximation factor.
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Metric TSP - Factor 3
2 approx.

For Eulerian path to exists all vertices must have
even number of edges.

Can be forced by doubling edges, smarter approach
only concerns vertices with odd degree, V ′.

1 Add maximum matching of V ′ to the graph.

2 Find Euler tour in this graph.

3 Output "short-cutted" Euler tour.

Note: |V ′| must be even since sum of the degree of
all vertices is even (2|E|).
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Metric TSP - Factor 3
2 approx.

Lemma 3.11 Let V ′ ⊆V , such that |V ′| is even, and let M
be a minimum cost perfect matching on V ′. Then,
cost(M)≤ OPT

2

Proof Consider an optimal TSP tour τ of G. Let τ′ be the
tour on V ′ obtained by short-cutting τ. By the triangle
inequality, cost(τ′)≤ cost(τ). The tour τ′ can be seen as
the union of two perfect matchings on V ′. The cheapest

of those two matchings has cost ≤ cost(τ′)
2 ≤ OPT

2 . So, the

optimal matching must also be of cost ≤ OPT
2 .

�
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Metric TSP - Factor 3
2 approx.

Lemma 3.12 The presented algorithm achieves an
approximation guarantee of 3

2 for metric TSP.

Proof The cost of the Euler tour is
≤ cost(T )+ cost(M)≤ OPT + 1

2OPT = 3
2OPT . By the

triangle inequality the cost of the path is also smaller than
3
2OPT .

�
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Summary

We have:

Seen approximation algorithms for a number of
problems.

Studied the approximation factors of those
algorithms.

Seen tight examples for the algorithms.
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Questions?
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