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Approximation algorithms for:
m Set Cover
m Steiner Tree
m[SP
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Set Cover

Given:
m A universe U of n elements.
m A collection of subsets of U, S={S, ..., &}

m A cost functionc:S— Q™.

Find a minimum cost subcollection of Sthat covers all ele-
ments of U.
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Set Cover - Example

U =1{1,234,5)

S=1{5,%, 3}
Sl — {47 17 3}
S = {25}

3 = {1747 37 2}

c:S— Q"
c(S1) =5
c(S) =10

G -3
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Set Cover - Example

U =1{1,234,5)

S=1{5,% 3}
Sl — {47 17 3}
S = {25}
$=1{1432}

c:S— Q"
c(S1) =5
c(S) =10

G -3
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Set Cover - Example

U=1{12345) SSUS, C U
SUS C U
S={S.%,S}
S = {47 17 3} C(Sl) T C(SZ) =15
S = 12,5} C(S) +¢(S3) =13
S$=1{1,4,32}
c:S— Q"
C(S1) =5
¢(&) =10
7 =3
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Set Cover - Example

U =1{1,234,5)

S=1{5,% 3}
Sl — {47 17 3}
S ={2,5}
$=1{14,32}

c:S— Q"

o(S1) =5
o(Sp) = 10

% (%) =3
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So SHSUS3is a set
cover for U
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Set Cover - Greedy algorithm 1/4

cost(S)
S-C

1 C—0

2 While C #U do
Find the set Swith the highest o =
For allee S—C, set price(e) = a.
C—CuUS

IS the cost-effectiveness of a set S.

cost(s)
S—C|

3 Output the picked sets.

Number the elements e of U in the order in which they
where covered, €y, ..., .
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Set Cover - Greedy algorithm 2/4

- OPT
Lemma 2.3 For each k€ {1,...,n}, price(e) < 757

Proof In every iteration the leftover sets of the optimal
solution can cover the remaining elements at a cost of at
most OPT. Therefore, amongst those sets there must be

an element with cost at most (%T with C the set of
uncovered elements. C contains at leastn— k+ 1
elements.

OPT OPT

rice < — <
pricetaq) < C| — n—k+1
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Set Cover - Greedy algorithm 3/4

Theorem 2.4 The greedy algorithm is an Hp, factor
approximation algorithm for the minimum set cover

problem, where Hy = 1+ % + ..+ %

Proof The total cost is equal to $}_, price(ex). By
Lemma 2.3, this is at most (1+ % +---F %) - OPT.

g
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Set Cover - Greedy algorithm 4/4

£

1/n 1/{n-1) |

books. googl e. com(first 20 pages)
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books.google.com

Vertex Cover

m The vertex cover problem is a special case of set

cover with the highest element occurence frequency
f =2

m For vertex cover there Is a factor 2 approximation.

m Set cover approximation algorithms, either factor
O(logn) or f.

g
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Vertex Cover as Set Cover

Consider a graph G = (V, E) with:
mV ={Vy, Vz V3}
mE=1{(12),(23), (1,3}

We might define each vertex by the set of edges
connected to it. Now we have a set cover problem with:

mU={(12), (23), (1,3) }

mS—
{1{(1,2),(1,3)},{(1,2),(23)},{(23),(1,3) } }

q.
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Set Cover - Layering algorithm

m Factor f approximation algorithm for set cover.

mLetw:V — QT be the function assigning weights to
the vertices of a graph G = (V,E).

m A weight function is degree-weighted If there is a
constant ¢ > O such that the weight of each vertex

veVisc-deg(v).

g
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Set Cover - Layering algorithm

Lemma 2.6 Letw:V — QT be a degree-weighted
function. Then the cost of selecting all vertices

w(V) < 2-OPT.

Proof Let C be the constant such that w(v) = c- deg(v),
and let U be an optimal vertex cover in G.

Z)deg(v) > |E[  w(U) = clE]|

The sum of the degree of all vertices of a graph is 2|E| so

w(V) = 2c|E| < 2-OPT.
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Vertex Cover - Layering algorithm

1 Go=G, k=0
2 while G = (V,E) has vertices v € V with deg(v) > 0

w(v)
deg(v)

4 Dk={v|veVanddeg(v)=0}

5 Wik={v|veVandw(v)=c-deg(v) }

6 Gy..1 = the graph induced on V — (Dx UW)
.

38

3 C= min( ) over all v e V with deg(v) > 0

k=k+1
return C=WpU---UW_1
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Vertex Cover - Layering algorithm

1 Go=G, k=0
2 while G = (V,E) has vertices v € V with deg(v) > 0

w(v)
deg(v)

4 Dk={v|veVanddeg(v)=0}

5 Wik={v|veVandw(v)=c-deg(v) }
6a  Vkp1=V — (DxUW)
6b Ex.i=E—{(i,]) |1 € (DkUWk) or j € (DxUW) }
6¢C Gir1 = (Vik+1, Ex+1)

7 k=k+1

% 8 returnC=WpU---UW_1
\C
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Vertex Cover - Layering algorithm

1 Go=G, k=0
2 while G = (V,E) has vertices v € V with deg(v) > 0

3

4
5
6a
6b
6C
5

w(v)
deg(v)

Dk={v|veVanddeg(v)=0}
W={v|veVandw(v)=c-deg(v) }

Vier =V — (D UWL)

Exii=E—{(i,))|i€ (DkUW) or j € (DxUW) }
Gkr1 = (Vki1,Ext1)

k=k+1

C= min( ) over all v € V with deg(v) > 0 tx(v) = c-deg(V)

% 8 returnC=WpU---UW_1
X
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Layering algorithm - Proof ?

Consider a vertex v € C. If ve W, its weight can be
decomposed as:
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Set Cover - Layering algorithm

1 Up=U,S$5=S k=0
2 while & has elements swith || >0
3 C:min(ﬁ) over all s€ S with |s| >0
4 Dk={s|se&and|g =0}
5 Wk={s|se Sandw(s) =c|g| }
6a Uk:1 = U — (DkUW)
6b  Sq1={5[s€S, s =5-(DUW)}
7 k=k+1
8 returnC=WpU---UW_1
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Stelner Tree

Given:

m An undirected graph G = (V, E) with nonnegative
edge cost.

m A partitioning of the vertices V into required, and
Steiner edges.
Find a minimum cost tree in G that contains all the required
vertices and any subset of Steiner vertices.

g
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Metric Steiner Tree

A restriction of the Steiner Tree problem to those graphs
that satisfy the triangle inequality. That is, G has to be a
complete undirected graph, and for any three vertices u, v
and w, cost (u,V) < cost(u,w) 4 cost (v, w).

Theorem 3.2 There is an approximation factor preserv-
Ing reduction from the Steiner tree problem to the metric
Steiner tree problem.

g
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Metric Steiner Tree «<— MST

Theorem 3.3 The cost of a Minimal Spanning Tree on the
required vertices is within 2- OPT .
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Traveling salesman problem (TSP)

Given a complete graph with nonnegative edge costs, find
a minimum cost cycle visiting evey vertex exactly once.

Theorem 3.6 For any polynomial computable function

a(n), TSP can not be approximated within a factor of a(n),
unless P = NP.

g
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Traveling salesman problem (TSP)

Proof Using a polynomial factor a(n) approximation
algorithm for TSP we can decide the Hamiltonian cycle
problem which is NP-Hard in polynomial time. The
existence of such an algorithm would therefore imply that

P = NP.

(continued)
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Traveling salesman problem (TSP)

Reduction of Hamiltonian Cycle to polynomial factor
approximation of TSP.

Assign a weight of 1 to edges of G. Extend G to the
complete graph G’ and give all added "nonedges" weight
a(n)-n. If G has a Hamiltonian cycle, then the

corresponding tour in G’ has cost n.

If G has no Hamiltonian cycle, any tour in G’ must use an
edge of cost a(N) - N and it therefore has cost > a(n) - n.

ﬂ HELSINKI UNIVERSITY OF TECHNOLOGY
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Metric TSP - Factor 2 approx.

m The proof on the previous slide used edge weights
that did not satisfy the triangle inequality.

m Metric TSP is also NP-Complete, but not hard to
approximate.

m Costofa MST is < OPT.

m Factor 2 approximation algorithm by using similar
approach as in proof of Steiner Tree algorithm
approximation factor.

g
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Metric TSP - Factor 2 approx.

m For Eulerian path to exists all vertices must have
even number of edges.

m Can be forced by doubling edges, smarter approach
only concerns vertices with odd degree, V'.

1 Add maximum matching of V'’ to the graph.
2 Find Euler tour in this graph.

3 Output "short-cutted" Euler tour.

m Note: |V'| must be even since sum of the degree of
all vertices is even (2|E|).

g
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Metric TSP - Factor 2 approx.

Lemma 3.11 Let V' CV, such that [V'| is even, and let M
be a minimum cost perfect matching on V’. Then,

OPT
cost(M) < =

Proof Consider an optimal TSP tour T of G. Let T be the
tour on V' obtained by short-cutting T. By the triangle
inequality, cost (1) < cost(T). The tour T can be seen as

the union of two perfect matchings on V’. The cheapest

of those two matchings has cost < COStZ( ) < L. So, the

optimal matching must also be of cost < O%.

4
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Metric TSP - Factor 2 approx.

Lemma 3.12 The presented algorithm achieves an
approximation guarantee of %’ for metric TSP.

Proof The cost of the Euler tour is

< cogt(T) +cogt(M) < OPT + 5OPT = 3OPT. By the
triangle inequality the cost of the path is also smaller than
SOPT.

g
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Summary

We have:

m Seen approximation algorithms for a number of
problems.

m Studied the approximation factors of those
algorithms.

m Seen tight examples for the algorithms.
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Questions?
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