Approximation Algorithms Seminar 1 Set Cover, Steiner Tree and TSP

Siert Wieringa

siert.wieringa@tkk.fi

Contents

Approximation algorithms for:

- Set Cover
- Steiner Tree
- TSP

Set Cover

Given:

- A universe U of n elements.
- A collection of subsets of U, $S = \{S_1, ..., S_k\}$.
- A cost function $c: S \rightarrow Q^+$.

Find a minimum cost subcollection of S that covers all elements of U.

$$U = \{1, 2, 3, 4, 5\}$$
$$S = \{S_1, S_2, S_3\}$$
$$S_1 = \{4, 1, 3\}$$
$$S_2 = \{2, 5\}$$
$$S_3 = \{1, 4, 3, 2\}$$

 $c: S \rightarrow Q^+$ $c(S_1) = 5$ $c(S_2) = 10$ $c(S_3) = 3$ HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

$$U = \{1, 2, 3, 4, 5\}$$

$$S = \{S_1, S_2, S_3\}$$

$$S_1 = \{4, 1, 3\}$$

$$S_2 = \{2, 5\}$$

$$S_3 = \{1, 4, 3, 2\}$$

 $c:S
ightarrow Q^+$ $c(S_1)=5$ $c(S_2)=10$ $c(S_3)=3$ HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

$S_1 \cup S_2 \subseteq U$ $S_2 \cup S_3 \subseteq U$

$$U = \{1, 2, 3, 4, 5\}$$

$$S = \{S_1, S_2, S_3\}$$

$$S_1 = \{4, 1, 3\}$$

$$S_2 = \{2, 5\}$$

$$S_3 = \{1, 4, 3, 2\}$$

 $c:S
ightarrow Q^+$ $c(S_1)=5$ $c(S_2)=10$ $c(S_3)=3$ HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

$S_1 \cup S_2 \subseteq U$ $S_2 \cup S_3 \subseteq U$

$$c(S_1) + c(S_2) = 15$$

 $c(S_2) + c(S_3) = 13$

$$U = \{1, 2, 3, 4, 5\}$$

$$S = \{S_1, S_2, S_3\}$$

$$S_1 = \{4, 1, 3\}$$

$$S_2 = \{2, 5\}$$

$$S_3 = \{1, 4, 3, 2\}$$

 $c:S
ightarrow Q^+$ $c(S_1) = 5$ $c(S_2) = 10$ $c(S_3) = 3$ HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

$S_1 \cup S_2 \subseteq U$ $S_2 \cup S_3 \subseteq U$

$$c(S_1) + c(S_2) = 15$$

 $c(S_2) + c(S_3) = 13$

So $S_2 \cup S_3$ is a set cover for U

Approximation Algorithms Seminar 1 - 4/27

Set Cover - Greedy algorithm 1/4

- 1 $C \leftarrow \emptyset$
- 2 While $C \neq U$ do

Find the set *S* with the highest $\alpha = \frac{cost(s)}{|S-C|}$ For all $e \in S - C$, set $price(e) = \alpha$. $C \leftarrow C \cup S$.

3 Output the picked sets.

Number the elements e of U in the order in which they where covered, e_1, \ldots, e_k .

Lemma 2.3 For each $k \in \{1, ..., n\}$, $price(e_k) \le \frac{OPT}{n-k+1}$.

Proof In every iteration the leftover sets of the optimal solution *can* cover the remaining elements at a cost of at most *OPT*. Therefore, amongst those sets there must be an element with cost at most $\frac{OPT}{|\overline{C}|}$ with \overline{C} the set of uncovered elements. \overline{C} contains at least n - k + 1 elements.

$$price(e_k) \leq \frac{OPT}{|\overline{C}|} \leq \frac{OPT}{n-k+1}$$

Set Cover - Greedy algorithm 3/4

Theorem 2.4 The greedy algorithm is an H_n factor approximation algorithm for the minimum set cover problem, where $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Proof The total cost is equal to $\sum_{k=1}^{n} price(e_k)$. By Lemma 2.3, this is at most $(1 + \frac{1}{2} + \cdots + \frac{1}{n}) \cdot OPT$.

Set Cover - Greedy algorithm 4/4

books.google.com (first 20 pages)

Vertex Cover

- The vertex cover problem is a special case of set cover with the highest element occurrence frequency f = 2.
- For vertex cover there is a factor 2 approximation.
- Set cover approximation algorithms, either factor O(log n) or f.

Vertex Cover as Set Cover

Consider a graph G = (V, E) with:

$$V = \{ V_1, V_2, V_3 \}$$

$$\bullet E = \{ (1,2), (2,3), (1,3) \}$$

We might define each vertex by the set of edges connected to it. Now we have a set cover problem with:

$$U = \{ (1,2), (2,3), (1,3) \}$$

$$S = \{ \{ (1,2), (1,3) \}, \{ (1,2), (2,3) \}, \{ (2,3), (1,3) \} \}$$

Set Cover - Layering algorithm

- Factor f approximation algorithm for set cover.
- Let $w: V \rightarrow Q^+$ be the function assigning weights to the vertices of a graph G = (V, E).
- A weight function is *degree-weighted* if there is a constant c > 0 such that the weight of each vertex $v \in V$ is $c \cdot deg(v)$.

Set Cover - Layering algorithm

Lemma 2.6 Let $w: V \rightarrow Q^+$ be a degree-weighted function. Then the cost of selecting all vertices $w(V) \leq 2 \cdot OPT$.

Proof Let *c* be the constant such that $w(v) = c \cdot deg(v)$, and let *U* be an optimal vertex cover in *G*.

$$\sum_{v \in U} deg(v) \ge |E| \qquad w(U) \ge c|E|$$

The sum of the degree of all vertices of a graph is 2|E| so $w(V) = 2c|E| \le 2 \cdot OPT$.

Vertex Cover - Layering algorithm

1
$$G_0 = G, \ k = 0$$

2 while $G_k = (V, E)$ has vertices $v \in V$ with deg(v) > 0

3
$$c = min\left(\frac{w(v)}{deg(v)}\right)$$
 over all $v \in V$ with $deg(v) > 0$

4
$$D_k = \{ v \mid v \in V \text{ and } deg(v) = 0 \}$$

5
$$W_k = \{ v \mid v \in V \text{ and } w(v) = c \cdot deg(v) \}$$

6
$$G_{k+1}$$
 = the graph induced on $V - (D_k \cup W_k)$

$$7 k = k+1$$

8 return
$$C = W_0 \cup \cdots \cup W_{k-1}$$

Vertex Cover - Layering algorithm

1
$$G_0 = G, \ k = 0$$

2 while $G_k = (V, E)$ has vertices $v \in V$ with deg(v) > 0

3
$$c = min\left(\frac{w(v)}{deg(v)}\right)$$
 over all $v \in V$ with $deg(v) > 0$

4
$$D_k = \{ v \mid v \in V \text{ and } deg(v) = 0 \}$$

5
$$W_k = \{ v \mid v \in V \text{ and } w(v) = c \cdot deg(v) \}$$

$$6a \qquad V_{k+1} = V - (D_k \cup W_k)$$

6b
$$E_{k+1} = E - \{ (i, j) \mid i \in (D_k \cup W_k) \text{ or } j \in (D_k \cup W_k) \}$$

6c
$$G_{k+1} = (V_{k+1}, E_{k+1})$$

$$7 k = k+1$$

8 return
$$C = W_0 \cup \cdots \cup W_{k-1}$$

Vertex Cover - Layering algorithm

1
$$G_0 = G, \ k = 0$$

2 while $G_k = (V, E)$ has vertices $v \in V$ with deg(v) > 0

3
$$c = min\left(\frac{w(v)}{deg(v)}\right)$$
 over all $v \in V$ with $deg(v) > 0$ $t_k(v) = c \cdot deg(v)$

4
$$D_k = \{ v \mid v \in V \text{ and } deg(v) = 0 \}$$

5
$$W_k = \{ v \mid v \in V \text{ and } w(v) = c \cdot deg(v) \}$$

$$6a \qquad V_{k+1} = V - (D_k \cup W_k)$$

6b
$$E_{k+1} = E - \{ (i, j) \mid i \in (D_k \cup W_k) \text{ or } j \in (D_k \cup W_k) \}$$

6c
$$G_{k+1} = (V_{k+1}, E_{k+1})$$

$$7 k = k+1$$

8 return
$$C = W_0 \cup \cdots \cup W_{k-1}$$

Layering algorithm - Proof ?

Consider a vertex $v \in C$. If $v \in W_j$, its weight can be decomposed as:

$$w(v) = \sum_{i \le j} t_i(v) ????$$

Set Cover - Layering algorithm

1
$$U_0 = U, S_0 = S, k = 0$$

2 while
$$S_k$$
 has elements s with $|s| > 0$

3
$$c = min\left(\frac{w(s)}{|s|}\right)$$
 over all $s \in S_k$ with $|s| > 0$

4
$$D_k = \{ s \mid s \in S_k \text{ and } |s| = 0 \}$$

5
$$W_k = \{ s \mid s \in S_k \text{ and } w(s) = c |s| \}$$

6a
$$U_{k+1} = U - (D_k \cup W_k)$$

6b
$$S_{k+1} = \{ s' \mid s \in S_k, s' = s - (D_k \cup W_k) \}$$

$$7 k = k+1$$

8 return $C = W_0 \cup \cdots \cup W_{k-1}$

Steiner Tree

Given:

- An undirected graph G = (V, E) with nonnegative edge cost.
- A partitioning of the vertices V into required, and Steiner edges.

Find a minimum cost tree in G that contains all the required vertices and any subset of Steiner vertices.

A restriction of the Steiner Tree problem to those graphs that satisfy the *triangle inequality*. That is, *G* has to be a complete undirected graph, and for any three vertices u, vand $w, cost(u, v) \leq cost(u, w) + cost(v, w)$.

Theorem 3.2 There is an approximation factor preserving reduction from the Steiner tree problem to the metric Steiner tree problem.

Metric Steiner Tree \leftrightarrow MST

Theorem 3.3 The cost of a Minimal Spanning Tree on the required vertices is within $2 \cdot OPT$.

Traveling salesman problem (TSP)

Given a complete graph with nonnegative edge costs, find a minimum cost cycle visiting evey vertex exactly once.

Theorem 3.6 For any polynomial computable function $\alpha(n)$, TSP can not be approximated within a factor of $\alpha(n)$, unless P = NP.

Traveling salesman problem (TSP)

Proof Using a polynomial factor $\alpha(n)$ approximation algorithm for TSP we can decide the Hamiltonian cycle problem which is NP-Hard in polynomial time. The existence of such an algorithm would therefore imply that P = NP.

(continued)

Traveling salesman problem (TSP)

Reduction of Hamiltonian Cycle to polynomial factor approximation of TSP.

Assign a weight of 1 to edges of *G*. Extend *G* to the complete graph G' and give all added "nonedges" weight $\alpha(n) \cdot n$. If *G* has a Hamiltonian cycle, then the corresponding tour in G' has cost *n*.

If *G* has no Hamiltonian cycle, any tour in *G'* must use an edge of cost $\alpha(n) \cdot n$ and it therefore has cost $> \alpha(n) \cdot n$.

Metric TSP - Factor 2 approx.

- The proof on the previous slide used edge weights that did not satisfy the triangle inequality.
- Metric TSP is also NP-Complete, but not hard to approximate.
- Cost of a MST is $\leq OPT$.
- Factor 2 approximation algorithm by using similar approach as in proof of Steiner Tree algorithm approximation factor.

Metric TSP - Factor $\frac{3}{2}$ **approx.**

- For Eulerian path to exists all vertices must have even number of edges.
- Can be forced by doubling edges, smarter approach only concerns vertices with odd degree, V'.
- 1 Add maximum matching of V' to the graph.
- 2 Find Euler tour in this graph.
- 3 Output "short-cutted" Euler tour.
- Note: |V'| must be even since sum of the degree of all vertices is even (2|E|).

Metric TSP - Factor $\frac{3}{2}$ **approx.**

Lemma 3.11 Let $V' \subseteq V$, such that |V'| is even, and let M be a minimum cost perfect matching on V'. Then, $cost(M) \leq \frac{OPT}{2}$

Proof Consider an optimal TSP tour τ of *G*. Let τ' be the tour on *V'* obtained by short-cutting τ . By the triangle inequality, $cost(\tau') \leq cost(\tau)$. The tour τ' can be seen as the union of two perfect matchings on *V'*. The cheapest of those two matchings has $cost \leq \frac{cost(\tau')}{2} \leq \frac{OPT}{2}$. So, the optimal matching must also be of $cost \leq \frac{OPT}{2}$.

Metric TSP - Factor $\frac{3}{2}$ **approx.**

Lemma 3.12 The presented algorithm achieves an approximation guarantee of $\frac{3}{2}$ for metric TSP.

Proof The cost of the Euler tour is $\leq cost(T) + cost(M) \leq OPT + \frac{1}{2}OPT = \frac{3}{2}OPT$. By the triangle inequality the cost of the path is also smaller than $\frac{3}{2}OPT$.

Summary

We have:

- Seen approximation algorithms for a number of problems.
- Studied the approximation factors of those algorithms.
- Seen tight examples for the algorithms.

Questions?

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

Approximation Algorithms Seminar 1 - 27/27