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Primal Problem

minimise
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

Dual Problem

maximise
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≤ cj, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . ,m
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Complementary Slackness Conditions (CS)
Let α ≥ 1, β ≥ 1.

Primal (Relaxed) CS

∀1 ≤ j ≤ n : xj 6= 0 −→ cj

α
≤

m∑
i=1

aijyi ≤ cj

Dual (Relaxed) CS

∀1 ≤ i ≤ m : yi 6= 0 −→ bi ≤
n∑

j=1

aijxj ≤ β · bi

Proposition (15.1, page 125)

If x and y are primal and dual feasible satisfying the conditions above
then n∑

j=1

cjxj ≤ α · β ·
m∑

i=1

biyi.
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Recap: Primal-Dual Schema (PDS)

Theorem (12.2, page 96, Weak Duality Theorem)

If x and y are primal and dual feasible solutions, respectively, then
m∑

i=1

biyi ≤
n∑

j=1

cjxj.

Basic idea of PDS:
Maintain pair of solutions (x, y) that satisfy primal and
dual (relaxed) CS, e.g. start with x = 0, y = 0.
x may be primal infeasible and y may be dual suboptimal
(but dual feasible); primal and dual CS must be satisfied
Iteratively improve feasibility of x and optimality of y;
finally: m∑

i=1

biyi ≤
n∑

j=1

cjxj ≤ α · β ·
m∑

i=1

biyi ≤ α · β ·OPT.
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Minimum Multicut Problem (MinIntMulticut)

Let G = (V,E) be an undirected graph with capacities
ce ≥ 0 ∀e ∈ E

Let {(s1, t1), . . . , (sk, tk)} be a set of pairs of vertices
s.t. (si, ti) 6= (sj, tj) ∀i 6= j (called source-sink or
source-destination (SD) pairs)

Multicut M is a set of edges s.t. M ⊆ E and there is no
path from si to ti in (V,E \M) ∀1 ≤ i ≤ k

Problem: Find minimum capacity multicut in G
(generalisation of multiway cut problem)

First: factor 2 approximation by PDS for trees, then factor
O(log(k)) by LP-rounding for general graphs
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Minimum Multicut Problem (cont.)

Minimum multicut in trees is NP-hard

Minimum multicut in trees sounds easy because there is a
unique path for each pair (si, ti)
Problem is NP-hard even for ce = 1∀e ∈ E and tree height 1
Idea of reduction of the Minimum Vertex Cover Problem

Vertex Cover

Edges in graph: {{v1, v2}, {v1, v3}, {v3, v4}}

v1

v3 v4v2

Multicut

1
1

1

1

v1 v2 v3 v4

SD pairs: {(v1, v2), (v1, v3), (v3, v4)}
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Minimum Multicut Problem (cont.)

Model the problem with 0/1-integer variables de

For each pair (si, ti), there exists a unique path pi between
si and ti
Denote by e ∈ pi that edge e is on path pi

ILP Program for MinIntMulticut

minimise
∑
e∈E

cede

subject to
∑
e∈pi

de ≥ 1, i ∈ {1, . . . , k}

de ∈ {0, 1}, e ∈ E
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Primal Problem (MinFractMulticut)

minimise
∑
e∈E

cede

subject to
∑
e∈pi

de ≥ 1, i ∈ {1, . . . , k}

de ≥ 0, e ∈ E

Dual Problem ≡ Max Multicommodity Flow
(MaxFractMulticomFlow)

maximise
k∑

i=1

fi

subject to
∑

i:e∈pi

fi ≤ ce, e ∈ E

fi ≥ 0, i ∈ {1, . . . , k}
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Integrality Gap

Example 18.2

Example with unit edge capacities

MinFractMulticut =
MaxFractMulticomFlow = 3/2
MinIntMulticut = 2
MaxIntMulticomFlow = 1

t1, s2

s1, t3 t2, s3

1/2 1/2

1/2
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Applying the Primal-Dual Schema (PDS)

Idea for applying PDS: pair (d, f), d primal infeasible(!)
“integer multicut”, f dual feasible integral multicommodity
flow
Iteratively improve feasibility of d and optimality of f
Choosing α = 1 and β = 2 → factor 2 approximation
algorithm for MinIntMulticut, factor 1/2 approximation
algorithm for MaxIntMulticomFlow

n∑
e∈E

cede ≤ α · β ·
k∑

i=1

fi ≤ α · β ·OPTMinIntMulticut

k∑
i=1

fi ≥
1

α · β

n∑
e∈E

cede ≥
1

α · β
·OPTMaxIntMulticomFlow
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Applying the Primal-Dual Schema (cont.)

Primal CS

∀e ∈ E : de 6= 0 =⇒
∑

i:e∈pi

fi = ce

Any edge picked in the multicut must be saturated.

Relaxed Dual CS

∀i ∈ {1, . . . , k} : fi 6= 0 =⇒
∑
e∈pi

de ≤ 2

At most two edges can be picked from a path carrying nonzero
flow. (At least one edge because of primal feasibility at the end.)
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Outline of Algorithm

Root the tree at arbitrary vertex
Define depth of vertex u to be length of shortest path p to
the root (which has depth 0)
If e1, e2 ∈ p, where p is a path from a vertex to the root,
and e1 occurs before e2, then e1 is called deeper than e2

Denote by lca(u, v) the lowest common ancestor of v and u,
i.e. minimum depth vertex on path from u to v
Start with empty multicut and zero flow
In each iteration, pick deepest unprocessed vertex v and
route greedily integral flow between pairs (si, ti)
s.t. v = lca(si, ti)
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Outline of Algorithm (cont.)

When no more flow can be routed between these pairs, add
all edges saturated in this iteration to list D in arbitrary
order, v becomes processed
Although edge-order within iteration is arbitrary, edges of
later iterations are appended to the list
When all vertices have been processed, the flow is maximal
As D contains all saturated edges, it is a multicut (but
might contain redundant edges)
Introduce reverse delete step: consider edges in reverse
order in which they were added to D, if deletion of edge
e ∈ D still gives valid multicut remove e from D
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Algorithm 18.4

1. Initialisation: f ← 0;D← ∅.
2. Flow routing: For each vertex v, in non-increasing order of

depth, do:
- For each pair (si, ti) s.t. lca(si, ti) = v, greedily route
integral flow from si to ti.
- Add to D all edges that were saturated in current
iteration in arbitrary order.

3. Let e1, e2, . . . , el be the ordered list D
4. Reverse delete: For j = l to j = 1 do:

If D \ {ej} is a multicut in G, then D← D \ {ej}.
5. Output flow and multicut D.
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Checking Complementary Slackness

Lemma (18.5, page 149)

Let (si, ti) be a pair with nonzero flow, and let lca(si, ti) = v. At most
one edge is in D from each of the two paths, si to v and ti to v.

Proof.

Same argument for both paths: Let edges e and e′ be picked
from path si − v, while e deeper than e′. Consider moment
during reverse delete when edge e is examined. Since e is not
discarded, ∃(sj, tj), s.t. e is the only edge in D on path sj − tj.
Let u = lca(sj, tj). Since e′ does not lie on path sj − tj, it follows
u deeper than e′ and, hence, v. After u has been processed, D
must contain edge e′′ from path sj − tj. (cont.)
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Proof. (cont.)

Because nonzero flow was routed on path si − ti, e must have
been added during the same of later iteration in which v is
processed. As v ancestor of u, e is added after e′′, therefore,
e′′ ∈ D when e is tested. This contradicts the assumption that
at this moment e is the only edge in D on path sj − tj.
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Theorem (18.6, page 150)

Algorithm 18.4 achieves approximation guarantees of factor 2 for
MinIntMulticut and 1/2 for MaxIntMulticomFlow on trees.

Proof.

The flow found in step 2 is maximal, and since D contains all
saturated edges, D is a multicut. Since the reverse delete only
discards redundant edges, D stays a multicut. Thus, multicut
and flow solutions are primal and dual feasible, respectively.
Since each edge in D is saturated, primal conditions are
satisfied. By the previous Lemma, at most two edges have been
picked from each path carrying nonzero flow. Therefore dual
conditions are also satisfied.
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Recap: LP-rounding-based Algorithms

Very simple method
1. Start with ILP formulation of problem
2. Relax integer constraints and solve LP
3. Round up non-integral solution

Basic idea: rounded solution may not be “too far” from
optimal non-integral solution in terms of objective value
and thus from the optimal integral solution
Method was applied to Set Cover Problem in Chapter 14
Here we apply it to the Multicut Problem in general graphs
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Multicut in General Graphs

Recall Multicut Problem (in Chapter 20 the dual problem
to a primal multicommodity flow problem)
Let G = (V,E) be an undirected graph with edge
capacities ce ≥ 0
Let {(s1, t1), . . . , (sk, tk)} be a set of pairs of vertices
s.t. (si, ti) 6= (sj, tj) ∀i 6= j (called source-sink or
source-destination (SD) pairs)
Denote by Pi the set of all paths from si to ti in G and let
P =

⋃k
i=1 Pi.

Multicut M is a set of edges s.t. M ⊆ E and there is no
path from si to ti in (V,E \M) ∀1 ≤ i ≤ k
Problem: Find minimum capacity multicut in G
(MinIntMulticut)
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Multicut in General Graphs (cont.)

Relaxed Problem (MinFractMulticut)

minimise
∑
e∈E

cede

subject to
∑
e∈p

de ≥ 1, p ∈ P

de ≥ 0, e ∈ E

Generalised version from previous problem: possibly more
than one path between each SD pair
Solving the problem can be interpreted as assigning
distance labels (lengths) de to edges e, s.t. distance labels
satisfy

dist(si, ti) := min
p∈Pi

∑
e∈p

de ≥ 1, ∀1 ≤ i ≤ k.
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Outline of Rounding-Based Algorithm

Obtain approximate solution of MinIntMulticut by
rounding optimal solution to MinFractMulticut
MinFractMulticut can be solved in polynomial time using
the ellipsoid algorithm
Problem provides simple feasibility check: one shortest
path computation for each pair
Let F =

∑
e∈E cede, an optimal solution to

MinFractMulticut
Let D = {e ∈ E|de > 0}; problem: how does one pick edges
from D that do not increase the capacity too much?
(compared to F)
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Outline of Rounding-Based Algorithm (cont.)

Intuition: edges with large distance labels are more
important than those with small labels (because of
optimality for MinFractMulticut)
Basic idea: grow disjoint sets of vertices (“balls”,
“regions”) starting from root nodes such that:

regions consist of vertices at distance at most a given value
from the root node
no region contains both, source and destination, of any pair
for each SD pair, either the source or the destination is in
one of the regions
edges with large distance labels are more likely to lie at the
boundary of regions
regions are grown one after another

Edges crossing region boundaries later form the multicut
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Conclusions

Additional Notation

Define weight of edge e to be cede

Denote by dist(u, v) the distance of u from v, i.e. the
length of the shortest path u− v in G w.r.t. edge lengths de

For S ⊂ V, δ(S) denotes the set of edges in cut (S, S̄), c(S)
denote the capacity of the cut
Consider for now source s1 to be the root of a region;
denote by S(r) the set of vertices at distance at most r, i.e.

S(r) = {v ∈ V|dist(s1, v) ≤ r}, S(0) = {s1}.
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Continuous Region-Growing Process

Consider varying r continuously and observe changes in S(r)
(source s1 fixed)

r
es1 a b c,d

0
r1 r2

S(r1) = {s1, a}
S(r2) = {s1, a,b, c,d}

Lemma (20.2, page 170)

If the region growing process is terminated before radius r = 1/2,
then the set S that is found does not contain any source-destination
pairs.

Proof.

We have: ∀u, v ∈ S(r) : dist(u, v) ≤ 2r. Since for each SD pair
(si, ti), dist(si, ti) ≥ 1, the lemma follows.
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Continuous Region-Growing Process (cont.)

a

b

c

d

s
d3

d1

d4

d2

d2 >> d1 = d3 = d4

a

b

c

d

s

d5

d3

d1

d4

d2

d2 >> d1 = d3 = d4 = d5
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Continuous Region-Growing Process (cont.)
Define the weight wt(S(r)) of region S(r) as a measure of the
weight of edges between nodes of the region (recall: cede)

wt(S(r)) := wt(s1) +
∑
e∈E

cedeqe, wt(s1) := F/k,

where

qe :=


1, if both endpoints are in S(r)

r−dist(s1,u)
dist(s1,v)−dist(s1,u) , if e = (u, v),u ∈ S(r), v /∈ S(r)

0, if neither endpoint is in S(r)

r
dist(s1,u) dist(s1, v)

0

1∂qe
∂r = 1/(dist(s1, v)− dist(s1,u))

≥ 1/de

∀r ∈ [dist(s1,u),dist(s1, v)]

qe
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Lemma (20.3, page 170)

Fixing ε = 2 ln(k + 1) suffices to ensure that c(S(r)) ≤ ε wt(S(r))
will be encountered before r = 1/2 (used later for establishing the
approximation guarantee).

Proof.

Assume c(S(r)) > ε wt(S(r)) ∀r ∈ [0, 1/2]. We have (summation
over e = (u, v),u ∈ S(r), v /∈ S(r))

d wt(S(r)) =
∑
e∈E

cededqe =
∑

e∈δ(S(r))

ce
de

dist(s1, v)− dist(s1,u)
dr

≥
∑

e∈δ(S(r))

cedr = c(S(r))dr > ε wt(S(r))dr.

Dividing by wt(S(r)) and integrating over [F/k,F + F/k]
(substitution rule) leads to contradiction ln(k + 1) > 1

2 ε.
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Transformation into Discrete Process

Discrete process starts with S = {s1}, adds vertices in
increasing distance (shortest path computation at s1)
Definition of weight wtD(S) of region S:

wtD(S) = F/k +
∑

e

cede,

where the sum is taken over the edges that have at least(!)
one vertex in S
Process stops when c(S) ≤ ε wtD(S), where ε = 2 ln(k + 1)

Note: wtD(S) ≥ wt(S) → discrete process cannot terminate
with larger S → S does not contain any SD pair
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Finding Successive Regions

Previously we only discussed one region; how does the
process operate on the other regions?
Algorithm finds sequence of regions Si and operates on
sequence of graphs Gi

Let G1 = G and S1 be the region found by the process
when selecting any source as root of the region
Successive graph G2 is formed by removing vertices from
S1 and incident edges
New root is selected among the sources of the remaining
(complete!) SD pairs in G2 and the process operates on G2
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Finding Successive Regions (cont.)

Let the sequence of regions already found be S1, . . . ,Si−1

Define Gi: graph resulting from removing vertices
⋃i−1

j=1 Sj

and all edges incident to them
If Gi does not contain any SD pair: done; otherwise pick
any source of such a pair and grow a region in Gi

All definitions (capacity, weight, etc.) defined w.r.t. Gi

Termination condition for growing process:
cGi(Si) ≤ ε wtGi(Si)

Output M =
⋃l

j=1 δGj(Sj), where Sl last region found (l ≤ k)

Capacity c(M) =
∑l

j=1 cGj(Sj) (sets δGj(Sj) are disjoint)
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Finding Successive Regions (cont.)

s3

s1

s4

t2

t1

t4

s2

t3

δG1 (S1)

δG2 (S2)

δG3 (S3)

S3

S2

S1

Note: for i = 2, 3:

δGi(Si) 6= δG(Si)

cGi(Si) 6= cG(Si)

André Schumacher LP Techn. for Multicuts&Multicom. Flows 32/40



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

Multicut and Integer Multicommodity Flow in Trees
Multicut in General Graphs

Approx. Alg. for Multicut in General Graphs

Continuous Process
Discrete Process
Conclusions

Algorithm 20.4 (Minimum Multicut)

1. Find an optimal solution to relaxed LP for
MinFractMulticut, obtaining edge distance labels de.

2. ε← 2 ln(k + 1),H← G,M← ∅;
3. While ∃ source-sink pair (sj, tj) in H do:

3.1 Grow region S with root sj until cH(S) ≤ εwtH(S);
3.2 M← M ∪ δH(S);
3.3 H← H with vertices and incident edges of S removed;

4. Output M.
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Proving the Approximation Factor

Lemma (20.5, page 173)

The set M found is a multicut.

Proof.

We need to prove that no region contains a source-sink pair.
The same argument as in the proof of Lemma 20.3 shows that
the growing process in Gi terminates before r = 1/2. Also, the
distance between any pair of vertices in region S is at most
2r < 1 (w.r.t. Gi). Since Gi is a subgraph of G, distances in Gi

cannot be smaller than in G: distGi(si, ti) ≥ distG(si, ti) ≥ 1.
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Proving the Approximation Factor (cont.)

Lemma (20.6, page 173)

c(M) ≤ 2εF = 4 ln(k + 1)F, where c(M) =
∑

e∈M ce,
M =

⋃l
j=1 δGj(Sj), and F =

∑
e∈E cede.

Proof.

At the end of iteration i we have cGi(Si) ≤ ε wtGi(Si). Each
edge of G contributes to the weight of at most one region. The
total weight of all edges in G is F (by definition). Since each
iteration disconnects at least one SD pair, the number of
iterations is bounded by k. Therefore, the total weight
attributed to source vertices is at most F. We obtain:

c(M) =
∑

i

cGi(Si) ≤ ε

(∑
i

wtGi(Si)

)
≤ ε

(
k
F
k

+
∑

e

cede

)
= 2εF
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Proving the Approximation Factor (cont.)

Theorem (20.7, page 174)

Algorithm 20.4 achieves an approximation guarantee of O(log(k))
for the minimum multicut problem.

Proof.

From Lemma 20.6, using the definition of F and weak duality,
we obtain

c(M) =
∑

i

cGi(Si) ≤ 4 ln(k + 1)
∑
e∈E

cede ≤ 4 ln(k + 1)OPT
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Approximate MaxFlow / MinCut Theorem

Corollary (20.8, page 174)

In an undirected graph with k source-sink pairs,

max
m/c flow F

|F| ≤ min
multicut C

|C| ≤ O(log k)

(
max

m/c flow F
|F|
)

,

where |F| represent the value of multicommodity flow F, and |C| the
value of multicut C.
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Example 20.9

Definition: An expander graph is a graph G = (V,E) in which
every vertex has the same degree d and for any nonempty
subset S ⊂ V,

|δ(S)| > min{|S|, |S̄|},

where δ(S) denotes the edges in the cut (S, S̄). Let H be an
expander graph with d ≥ 3, k vertices and unit edge capacities.
Fixing α = blogd k/2c ensures that for any vertex v there are at
least k/2 vertices at distance α′ ≥ α from v. For a proper
selection of source-sink pairs (located at least α hops apart)
each path with non-zero flow consumes Ω(log k) total units of
capacity. As the total amount of available capacity in the graph
is O(k), the value of the maximum multicommodity flow in H is
bounded by O(k/ log k). One then shows that the minimum
multicut has capacity Ω(k) (using the expander graph
property), thereby proving the claimed integrality gap.
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Conclusions

We have seen approximation algorithms for two version of
the multicut problem

factor 2 for trees
factor O(log k) for general graphs

For trees we also obtain an approximation algorithm for
integer multicommodity flow (for general graphs no
nontrivial algorithms are known)
Application of primal-dual schema and LP rounding
method (instructive?)
Although these techniques seem to be nice, it is (at least to
me) still not quite clear how to apply them in general
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Thanks for your attention..

Further comments or questions?
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