Outline

LP Techniques for Multicuts and Multicommodity Flows (Chs. 18, 20)

André Schumacher

Department of Information and Computer Science Helsinki University of Technology

March 27, 2008

Multicut and Integer Multicommodity Flow in Trees Recap: Primal-Dual Schema (PDS)
Problems and Relaxations
Appr. Alg. for MinIntMulticut \& MaxIntMulticomFlow
Multicut in General Graphs
Recap: LP-rounding-based Algorithms
Problems
Rounding-Based Algorithm for MinIntMulticut
Approx. Alg. for Multicut in General Graphs
Continuous Process
Discrete Process
Conclusions
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Information and Computer Science
André Schumacher LP Techn. for Multicuts\&Multicom. Flow

Complementary Slackness Conditions (CS)
Let $\alpha \geq 1, \beta \geq 1$.

Primal (Relaxed) CS

$$
\forall 1 \leq \mathrm{j} \leq \mathrm{n}: \quad \mathrm{x}_{\mathrm{j}} \neq 0 \quad \longrightarrow \quad \frac{\mathrm{c}_{\mathrm{j}}}{\alpha} \leq \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{a}_{\mathrm{ij}} \mathrm{y}_{\mathrm{i}} \leq \mathrm{c}_{\mathrm{j}}
$$

Dual (Relaxed) CS

$$
\forall 1 \leq \mathrm{i} \leq \mathrm{m}: \quad \mathrm{y}_{\mathrm{i}} \neq 0 \quad \longrightarrow \quad \mathrm{~b}_{\mathrm{i}} \leq \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}} \leq \beta \cdot \mathrm{b}_{\mathrm{i}}
$$

Proposition (15.1, page 125)
If x and y are primal and dual feasible satisfying the conditions above then

$$
\sum_{j=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \leq \alpha \cdot \beta \cdot \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{~b}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} .
$$

Minimum Multicut Problem (MinIntMulticut)

Theorem (12.2, page 96,
If x and y are primal and dual feasible solutions, respectively, then

$$
\sum_{i=1}^{m} b_{i} y_{i} \leq \sum_{j=1}^{n} c_{j} x_{j} .
$$

Basic idea of PDS:

- Maintain pair of solutions (x, y) that satisfy primal and dual (relaxed) CS, e.g. start with $x=0, y=0$.
- x may be primal infeasible and y may be dual suboptimal (but dual feasible); primal and dual CS must be satisfied
- Iteratively improve feasibility of x and optimality of y; finally:

$$
\begin{aligned}
& \text { HELSINKI UNIVERSIT } \mathbf{Y} \text { 日 TECHNOLOGY } \\
& \text { Department of Information and Computer Scie }
\end{aligned}
$$

Minimum Multicut Problem (cont.)

Minimum multicut in trees is NP-hard

- Minimum multicut in trees sounds easy because there is a unique path for each pair $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$
- Problem is NP-hard even for $\mathrm{c}_{\mathrm{e}}=1 \forall \mathrm{e} \in \mathrm{E}$ and tree height 1
- Idea of reduction of the Minimum Vertex Cover Problem

ges in graph: $\left\{\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}\right\}$

$\mathrm{v}_{1} \quad \mathrm{v}_{2}$
- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with capacities $\mathrm{c}_{\mathrm{e}} \geq 0 \quad \forall \mathrm{e} \in \mathrm{E}$
- Let $\left\{\left(\mathrm{s}_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)\right\}$ be a set of pairs of vertices s.t. $\quad\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right) \neq\left(\mathrm{s}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}}\right) \quad \forall \mathrm{i} \neq \mathrm{j}$ (called source-sink or source-destination (SD) pairs)
- Multicut M is a set of edges s.t. $\mathrm{M} \subseteq \mathrm{E}$ and there is no path from s_{i} to t_{i} in (V, $\left.\mathrm{E} \backslash \mathrm{M}\right) \quad \forall 1 \leq \mathrm{i} \leq \mathrm{k}$
- Problem: Find minimum capacity multicut in G (generalisation of multiway cut problem)
- First: factor 2 approximation by PDS for trees, then factor $\mathrm{O}(\log (\mathrm{k}))$ by LP-rounding for general graphs
HELSINKI UNIVERSITY OF TECHNOLOGY

Minimum Multicut Problem (cont.)

- Model the problem with $0 / 1$-integer variables d_{e}
- For each pair $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$, there exists a unique path p_{i} between s_{i} and t_{i}
- Denote by $\mathrm{e} \in \mathrm{p}_{\mathrm{i}}$ that edge e is on path p_{i}

ILP Program for MinIntMulticut

$$
\begin{array}{rlr}
\operatorname{minimise} & \sum_{e \in E} c_{e} d_{e} & \\
\text { subject to } & \sum_{e \in p_{i}} d_{e} \geq 1, & i \in\{1, \ldots, k\} \\
& d_{e} \in\{0,1\}, & e \in E
\end{array}
$$

HELSINKIUNIVERSSTY OF TECHNOLOGY
Department of Information and Computer Science

Integrality Gap

$$
\begin{array}{rlr}
\operatorname{minimise} & \sum_{\mathrm{e} \in \mathrm{E}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} & \\
\text { subject to } & \sum_{\mathrm{e} \in \mathrm{p}_{\mathrm{i}}} \mathrm{~d}_{\mathrm{e}} \geq 1, & \mathrm{i} \in\{1, \ldots, \mathrm{k}\} \\
& \mathrm{d}_{\mathrm{e}} \geq 0, & \mathrm{e} \in \mathrm{E}
\end{array}
$$

Dual Problem \equiv Max Multicommodity Flow (MaxFractMulticomFlow)

$$
\begin{array}{ll}
\operatorname{maximise} & \sum_{i=1}^{k} f_{i} \\
\text { subject to } & \sum_{i: e \in p_{i}} f_{i} \leq c_{e}, \\
f_{i} \geq 0, & e \in E \\
& i \in\{1, \ldots, k\}
\end{array}
$$

Department of Information Of TECHNOLOGY
André Schumacher LP Techn. for Multicuts\&Multicom. Flows 10/40

Multicut and Integer Multicommodity Flow in Trees

Approx. Alg, for Multicut in General Grapl in General Graph
Appr. Alg. for MinIntMulticut \& MaxIntMulticomFlo
Applying the Primal-Dual Schema (cont.)

Primal CS

$$
\forall \mathrm{e} \in \mathrm{E}: \quad \mathrm{d}_{\mathrm{e}} \neq 0 \quad \Longrightarrow \quad \sum_{\mathrm{i}: \mathrm{e} \in \mathrm{p}_{\mathrm{i}}} \mathrm{f}_{\mathrm{i}}=\mathrm{c}_{\mathrm{e}}
$$

Any edge picked in the multicut must be saturated.

Relaxed Dual CS

$$
\forall \mathrm{i} \in\{1, \ldots, \mathrm{k}\}: \quad \mathrm{f}_{\mathrm{i}} \neq 0 \quad \Longrightarrow \quad \sum_{\mathrm{e} \in \mathrm{p}_{\mathrm{i}}} \mathrm{~d}_{\mathrm{e}} \leq 2
$$

At most two edges can be picked from a path carrying nonzero flow. (At least one edge because of primal feasibility at the end.)

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{f}_{\mathrm{i}} \geq \frac{1}{\alpha \cdot \beta} \sum_{\mathrm{e} \in \mathrm{E}}^{\mathrm{n}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} \geq \frac{1}{\alpha \cdot \beta} \cdot \mathrm{OPT}_{\text {MaxIntMulticomFlow }}
$$

helsinki university of technology
Department of Information and Computer Science

Outline of Algorithm

- Root the tree at arbitrary vertex
- Define depth of vertex u to be length of shortest path p to the root (which has depth 0)
- If $\mathrm{e}_{1}, \mathrm{e}_{2} \in \mathrm{p}$, where p is a path from a vertex to the root, and e_{1} occurs before e_{2}, then e_{1} is called deeper than e_{2}
- Denote by lca (u, v) the lowest common ancestor of v and u , i.e. minimum depth vertex on path from u to v
- Start with empty multicut and zero flow
- In each iteration, pick deepest unprocessed vertex v and route greedily integral flow between pairs ($\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$) s.t. $\mathrm{v}=\operatorname{lca}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$
helsinki university of technology
Department of Information and Computer Science

Algorithm 18.4

1. Initialisation: $\mathrm{f} \leftarrow 0 ; \mathrm{D} \leftarrow \emptyset$.
2. Flow routing: For each vertex v, in non-increasing order of depth, do:

- For each pair $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ s.t. $\operatorname{lca}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)=\mathrm{v}$, greedily route integral flow from s_{i} to t_{i}.
- Add to D all edges that were saturated in current iteration in arbitrary order.

3. Let $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{l}}$ be the ordered list D
4. Reverse delete: For $\mathrm{j}=1$ to $\mathrm{j}=1$ do:

If $\mathrm{D} \backslash\left\{\mathrm{e}_{\mathrm{j}}\right\}$ is a multicut in G , then $\mathrm{D} \leftarrow \mathrm{D} \backslash\left\{\mathrm{e}_{\mathrm{j}}\right\}$.
5. Output flow and multicut D.

Outline of Algorithm (cont.)

- When no more flow can be routed between these pairs, add all edges saturated in this iteration to list D in arbitrary order, v becomes processed
- Although edge-order within iteration is arbitrary, edges of later iterations are appended to the list
- When all vertices have been processed, the flow is maximal
- As D contains all saturated edges, it is a multicut (but might contain redundant edges)
- Introduce reverse delete step: consider edges in reverse order in which they were added to D , if deletion of edge $e \in D$ still gives valid multicut remove e from D

HELSINKI UNIVERSITY OF TECHNOLOGY

Checking Complementary Slackness

> Lemma (18.5, page 149)
> Let $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ be a pair with nonzero flow, and let lca $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)=\mathrm{v}$. At most one edge is in D from each of the two paths, s_{i} to v and t_{i} to v .

Proof.

Same argument for both paths: Let edges e and é be picked from path $s_{i}-v$, while e deeper than e^{\prime}. Consider moment during reverse delete when edge e is examined. Since e is not discarded, $\exists\left(\mathrm{s}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}}\right)$, s.t. e is the only edge in D on path $\mathrm{s}_{\mathrm{j}}-\mathrm{t}_{\mathrm{j}}$. Let $u=l c a\left(s_{j}, t_{j}\right)$. Since e^{\prime} does not lie on path $s_{j}-t_{j}$, it follows u deeper than e^{\prime} and, hence, v . After u has been processed, D
must contain edge $e^{\prime \prime}$ from path $s_{j}-t_{j}$. (cont.)

Proof. (cont.)

Because nonzero flow was routed on path $s_{i}-t_{i}$, e must have been added during the same of later iteration in which v is processed. As v ancestor of u , e is added after $\mathrm{e}^{\prime \prime}$, therefore, $\mathrm{e}^{\prime \prime} \in \mathrm{D}$ when e is tested. This contradicts the assumption that at this moment e is the only edge in D on path $s_{j}-t_{j}$.

Recap: LP-rounding-based Algorithms
Problems

Recap: LP-rounding-based Algorithms

- Very simple method

1. Start with ILP formulation of problem
2. Relax integer constraints and solve LP
3. Round up non-integral solution

- Basic idea: rounded solution may not be "too far" from optimal non-integral solution in terms of objective value and thus from the optimal integral solution
- Method was applied to Set Cover Problem in Chapter 14
- Here we apply it to the Multicut Problem in general graphs

Multicut in General Graphs (cont.)

Relaxed Problem (MinFractMulticut)

$$
\begin{array}{rll}
\operatorname{minimise} & \sum_{\mathrm{e} \in \mathrm{E}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} & \\
\text { subject to } & \sum_{\mathrm{e} \in \mathrm{p}} \mathrm{~d}_{\mathrm{e}} \geq 1, & \mathrm{p} \in \mathrm{P} \\
& \mathrm{~d}_{\mathrm{e}} \geq 0, & \mathrm{e} \in \mathrm{E}
\end{array}
$$

- Generalised version from previous problem: possibly more than one path between each SD pair
- Solving the problem can be interpreted as assigning distance labels (lengths) d_{e} to edges e, s.t. distance labels satisfy
$\underset{\substack{\text { ITY OF TECHNOLOGY } \\ \text { and } \\ \text { tion and Compurer Science }}}{\operatorname{dist}}\left(\mathrm{s}_{\mathrm{p}}, \mathrm{t}_{\mathrm{i}}\right):=\min _{\mathrm{p}} \sum_{\mathrm{e} \in \mathrm{p}} \mathrm{d}_{\mathrm{e}} \geq 1, \quad \forall 1 \leq \mathrm{i} \leq \mathrm{k}$.
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Information and Computer Science

Outline of Rounding-Based Algorithm (cont.)

- Intuition: edges with large distance labels are more important than those with small labels (because of optimality for MinFractMulticut)
- Basic idea: grow disjoint sets of vertices ("balls", "regions") starting from root nodes such that:
- regions consist of vertices at distance at most a given value from the root node
- no region contains both, source and destination, of any pair
- for each SD pair, either the source or the destination is in one of the regions
- edges with large distance labels are more likely to lie at the boundary of regions
- regions are grown one after another
- Edges crossing region boundaries later form the multicut

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Information and Computer Science

- Define weight of edge e to be $\mathrm{c}_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}$
- Denote by $\operatorname{dist}(\mathrm{u}, \mathrm{v})$ the distance of u from v , i.e. the length of the shortest path $u-v$ in G w.r.t. edge lengths d_{e}
- For $\mathrm{S} \subset \mathrm{V}, \delta(\mathrm{S})$ denotes the set of edges in cut $(\mathrm{S}, \overline{\mathrm{S}}), \mathrm{c}(\mathrm{S})$ denote the capacity of the cut
- Consider for now source s_{1} to be the root of a region; denote by $\mathrm{S}(\mathrm{r})$ the set of vertices at distance at most r , i.e.

$$
S(r)=\left\{v \in V \mid \operatorname{dist}\left(s_{1}, v\right) \leq r\right\}, \quad S(0)=\left\{s_{1}\right\} .
$$

Additional Notation

Continuous Region-Growing Process

Consider varying r continuously and observe changes in $\mathrm{S}(\mathrm{r})$
(source s_{1} fixed)
$\mathrm{S}\left(\mathrm{r}_{1}\right)=\left\{\mathrm{s}_{1}, \mathrm{a}\right\}$
$\mathrm{S}\left(\mathrm{r}_{2}\right)=\left\{\mathrm{s}_{1}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\right\}$

Lemma (20.2, page 170)

If the region growing process is terminated before radius $\mathrm{r}=1 / 2$, then the set S that is found does not contain any source-destination pairs.

Proof.

We have: $\forall \mathrm{u}, \mathrm{v} \in \mathrm{S}(\mathrm{r})$: $\quad \operatorname{dist}(\mathrm{u}, \mathrm{v}) \leq 2 \mathrm{r}$. Since for each SD pair $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right) \geq 1$, the lemma follows.
Department of Information and Computer Science
André Schumacher

Approx. Alg. for Multicut in General Graphs

Continuous Process
Discrete Process

Continuous Region-Growing Process (cont.)
Define the weight $\mathrm{wt}(\mathrm{S}(\mathrm{r})$) of region $\mathrm{S}(\mathrm{r})$ as a measure of the weight of edges between nodes of the region (recall: $\mathrm{c}_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}$)

$$
\mathrm{wt}(\mathrm{~S}(\mathrm{r})):=\mathrm{wt}\left(\mathrm{~s}_{1}\right)+\sum_{\mathrm{e} \in \mathrm{E}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} \mathrm{q}_{\mathrm{e}}, \quad \mathrm{wt}\left(\mathrm{~s}_{1}\right):=\mathrm{F} / \mathrm{k},
$$

where

$$
\mathrm{q}_{\mathrm{e}}:= \begin{cases}1, & \text { if both endpoints are in } \mathrm{S}(\mathrm{r}) \\ \frac{\mathrm{r}-\operatorname{dist}\left(\mathrm{s}_{1}, \mathrm{u}\right)}{\operatorname{dist}^{\left(\mathrm{s}_{1}, \mathrm{v}\right)-\operatorname{dist}\left(\mathrm{s}_{1}, \mathrm{u}\right)},}, & \text { if } \mathrm{e}=(\mathrm{u}, \mathrm{v}), \mathrm{u} \in \mathrm{~S}(\mathrm{r}), \mathrm{v} \notin \mathrm{~S}(\mathrm{r}) \\ 0, & \text { if neither endpoint is in } \mathrm{S}(\mathrm{r})\end{cases}
$$

Continuous Region-Growing Process (cont.)

Transformation into Discrete Process

- Discrete process starts with $\mathrm{S}=\left\{\mathrm{s}_{1}\right\}$, adds vertices in increasing distance (shortest path computation at s_{1})
- Definition of weight $\mathrm{wt}^{\mathrm{D}}(\mathrm{S})$ of region S :

$$
\mathrm{wt}^{\mathrm{D}}(\mathrm{~S})=\mathrm{F} / \mathrm{k}+\sum_{\mathrm{e}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}}
$$

where the sum is taken over the edges that have at least(!) one vertex in S

- Process stops when $\mathrm{c}(\mathrm{S}) \leq \epsilon \mathrm{wt}^{\mathrm{D}}(\mathrm{S})$, where $\epsilon=2 \ln (\mathrm{k}+1)$
- Note: $\mathrm{wt}^{\mathrm{D}}(\mathrm{S}) \geq \mathrm{wt}(\mathrm{S}) \rightarrow$ discrete process cannot terminate with larger $S \rightarrow S$ does not contain any $S D$ pair
helsinki university of technology
Department of Information and Computer Science

Finding Successive Regions (cont.)

- Let the sequence of regions already found be $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{i}-1}$
- Define G_{i} : graph resulting from removing vertices $\bigcup_{\mathrm{j}=1}^{\mathrm{i}-1} \mathrm{~S}_{\mathrm{j}}$ and all edges incident to them
- If G_{i} does not contain any SD pair: done; otherwise pick any source of such a pair and grow a region in G_{i}
- All definitions (capacity, weight, etc.) defined w.r.t. G_{i}
- Termination condition for growing process: $\mathrm{c}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right) \leq \epsilon \mathrm{wt}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right)$
- Output $\mathrm{M}=\bigcup_{\mathrm{j}=1}^{1} \delta_{\mathrm{G}_{\mathrm{j}}}\left(\mathrm{S}_{\mathrm{j}}\right)$, where S_{l} last region found $(\mathrm{l} \leq \mathrm{k})$
- Capacity $\mathrm{c}(\mathrm{M})=\sum_{\mathrm{j}=1}^{\mathrm{l}} \mathrm{c}_{\mathrm{G}_{\mathrm{j}}}\left(\mathrm{S}_{\mathrm{j}}\right)$ (sets $\delta_{\mathrm{G}_{\mathrm{j}}}\left(\mathrm{S}_{\mathrm{j}}\right)$ are disjoint)
helsinki university of technology
Department of Information and Computer Science

Finding Successive Regions

- Previously we only discussed one region; how does the process operate on the other regions?
- Algorithm finds sequence of regions S_{i} and operates on sequence of graphs G_{i}
- Let $\mathrm{G}_{1}=\mathrm{G}$ and S_{1} be the region found by the process when selecting any source as root of the region
- Successive graph G_{2} is formed by removing vertices from S_{1} and incident edges
- New root is selected among the sources of the remaining (complete!) SD pairs in G_{2} and the process operates on G_{2}
helsinki university of technology
Department of Information and Computer Science

Proving the Approximation Factor

Algorithm 20.4 (Minimum Multicut)

1. Find an optimal solution to relaxed LP for

MinFractMulticut, obtaining edge distance labels d_{e}.
2. $\epsilon \leftarrow 2 \ln (\mathrm{k}+1), \mathrm{H} \leftarrow \mathrm{G}, \mathrm{M} \leftarrow \emptyset$;
3. While \exists source-sink pair ($\mathrm{s}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}}$) in H do:
3.1 Grow region S with root s_{j} until $\mathrm{c}_{\mathrm{H}}(\mathrm{S}) \leq \epsilon \mathrm{wt} \mathrm{H}_{\mathrm{H}}(\mathrm{S})$;
$3.2 \mathrm{M} \leftarrow \mathrm{M} \cup \delta_{\mathrm{H}}(\mathrm{S})$;
$3.3 \mathrm{H} \leftarrow \mathrm{H}$ with vertices and incident edges of S removed;
4. Output M.

$$
\begin{aligned}
& \text { HELSINKI UNIVERSITY OF TECHNOLOGY } \\
& \text { Department of Information and Computer Science }
\end{aligned}
$$

Proving the Approximation Factor (cont.)

$$
\begin{aligned}
& \text { Lemma }(20.6 \text {, page 173) } \\
& \mathrm{c}(\mathrm{M}) \leq 2 \in \mathrm{~F}=4 \ln (\mathrm{k}+1) \mathrm{F} \text {, where } \mathrm{c}(\mathrm{M})=\sum_{\mathrm{e} \in \mathrm{M}} \mathrm{C}_{\mathrm{e}}, \\
& \left.\mathrm{M}=\bigcup_{\mathrm{j}=1}^{\mathrm{j}} \delta_{\mathrm{G}_{\mathrm{j}}} \mathrm{~S}_{\mathrm{j}}\right) \text {, and } \mathrm{F}=\sum_{\mathrm{e} \in \mathrm{E}} \mathrm{C}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} .
\end{aligned}
$$

Proof.

At the end of iteration i we have $\mathrm{c}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right) \leq \epsilon \mathrm{wt}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right)$. Each edge of G contributes to the weight of at most one region. The total weight of all edges in G is F (by definition). Since each iteration disconnects at least one SD pair, the number of iterations is bounded by k . Therefore, the total weight attributed to source vertices is at most F. We obtain:
$\mathrm{c}(\mathrm{M})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right) \leq \epsilon\left(\sum_{\mathrm{i}} \mathrm{wt}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{S}_{\mathrm{i}}\right)\right) \leq \epsilon\left(\mathrm{k} \frac{\mathrm{F}}{\mathrm{k}}+\sum_{\mathrm{e}} \mathrm{c}_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}\right)=2 \epsilon \mathrm{~F}$

Lemma (20.5, page 173)

The set M found is a multicut.

Proof.

We need to prove that no region contains a source-sink pair. The same argument as in the proof of Lemma 20.3 shows that the growing process in G_{i} terminates before $\mathrm{r}=1 / 2$. Also, the distance between any pair of vertices in region S is at most $2 \mathrm{r}<1$ (w.r.t. G_{i}). Since G_{i} is a subgraph of G , distances in G_{i} cannot be smaller than in $\mathrm{G}: \operatorname{dist}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right) \geq \operatorname{dist}_{\mathrm{G}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right) \geq 1$. \square

cut and Integer Multicommodity Flow in Trees Approx. Alg. for Multicut in General Graphs
 Discrete Process

Proving the Approximation Factor (cont.)

Theorem (20.7, page 174)

Algorithm 20.4 achieves an approximation guarantee of $\mathrm{O}(\log (\mathrm{k}))$ for the minimum multicut problem.

Proof.

From Lemma 20.6, using the definition of F and weak duality, we obtain

$$
\mathrm{c}(\mathrm{M})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{~S}_{\mathrm{i}}\right) \leq 4 \ln (\mathrm{k}+1) \sum_{\mathrm{e} \in \mathrm{E}} \mathrm{c}_{\mathrm{e}} \mathrm{~d}_{\mathrm{e}} \leq 4 \ln (\mathrm{k}+1) \mathrm{OPT}
$$

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Information and Computer Science

Approximate MaxFlow／MinCut Theorem

Corollary（20．8，page 174）

In an undirected graph with k source－sink pairs，

$$
\max _{\mathrm{m} / \mathrm{c} \text { flow } \mathrm{F}}|\mathrm{~F}| \leq \min _{\text {multicut } \mathrm{C}}|\mathrm{C}| \leq \mathrm{O}(\log \mathrm{k})\left(\max _{\mathrm{m} / \mathrm{c} \text { flow } \mathrm{F}}|\mathrm{~F}|\right)
$$

where $|\mathrm{F}|$ represent the value of multicommodity flow F ，and $|\mathrm{C}|$ the value of multicut C ．


```
Discrete PI
Conclusions
```


Conclusions

－We have seen approximation algorithms for two version of the multicut problem
－factor 2 for trees
－factor $\mathrm{O}(\log \mathrm{k})$ for general graphs
－For trees we also obtain an approximation algorithm for integer multicommodity flow（for general graphs no nontrivial algorithms are known）
－Application of primal－dual schema and LP rounding method（instructive？）
－Although these techniques seem to be nice，it is（at least to me）still not quite clear how to apply them in general

