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Approximation Algorithms (p. 68-83) 21.2.2008Basi
 de�nitions
◮ Let Π be an NP-hard optimization (minimization) problem withobje
tive fun
tion fΠ. Algorithm A is an approximation s
heme for

Π if on input (I, ǫ), where I is an instan
e of Π and ǫ > 0 is an errorparameter, it outputs a solution s su
h that fΠ(I, s) ≤ (1 + ǫ)OPT .
◮ A is said to be a polynomial time approximation s
heme (PTAS), iffor ea
h �xed ǫ > 0, its running time is bounded by a polynomial inthe size of instan
e I.
◮ If the running time of A is bounded by a polynomial in the size ofinstan
e I and 1/ǫ then A is said to be a fully polynomial timeapproximation s
heme (FPTAS).
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Approximation Algorithms (p. 68-83) 21.2.2008Knapsa
k ProblemGiven a set S = {a1, ..., an} of obje
ts, with spe
i�ed sizes and pro�ts,
size(ai) ∈ Z+ and profit(ai) ∈ Z+, and a 
apa
ity B ∈ Z+, �nd asubset of obje
ts whose total size is bounded by B and total pro�t ismaximized.

◮ An algorithm is said to be pseudo-polynomial if its running time isbounded by a polynomial in |Iu|, where |Iu| is the unary size ofinstan
e I.
◮ Knapsa
k problem allows a pseudo-polynomial time algorithm.
◮ This fa
t is used to 
reate a FPTAS for Knapsa
k.
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Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
kLet A(i, j) be the maximum pro�t that 
an be attained with size lessthan or equal to j using items up to i.
◮ A(0, j) = 0

◮ A(i, 0) = 0

◮ A(i, j) = A(i − 1, j) if size(ai) > j

◮ A(i, j) = max{A(i − 1, j), profit(ai) + A(i − 1, j − size(ai))} if
size(ai) ≤ jUsing this algorithm, the solution to the Knapsa
k problem 
an be foundin time O(nB) simply by 
al
ulating A(n,B).
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Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
k (
ontinued)
◮ Problem: pro�ts of obje
ts are not bounded by a polynomial in n.
◮ Solution: ignore some number of least signi�
ant bits of pro�ts!
◮ Result: Pro�t of at least (1 − ǫ)OPT in time bounded by apolynomial in n and 1/ǫ (Theorem 8.4).
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Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
k (
ontinued)
◮ Let P be the pro�t of the most pro�table item.
◮ Given ǫ > 0, let K = ǫP

n
.

◮ For ea
h obje
t ai, de�ne profit′(ai) = ⌊profit(ai)
K

⌋.
◮ Using profit′ as the pro�t fun
tion, �nd the most pro�table set S.
◮ Output S.
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Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.4Let O denote the optimal set. It is easy to see that
K · profit′(ai) = profit(ai) − Ci, where 0 ≤ Ci < K. Thus,
K · profit′(O) ≥ profit(O)−nK ⇒ profit(O)−K · profit′(O) ≤ nK.The dynami
 programming step gives us the optimal solution and thus
profit(S) ≥ K · profit′(O) ≥ profit(O) − nK = OPT − ǫP ≥
OPT − ǫOPT = (1 − ǫ)OPT .The running time of the algorithm without division by K is O(nB). Atrivial upper bound for this is O(n2P ). By ignoring the least signi�
antbits (division by K) we get running time O(n2⌊ P

K
⌋) = O(n2⌊n

ǫ
⌋), whi
his polynomial in n and 1/ǫ, proving the theorem.
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Approximation Algorithms (p. 68-83) 21.2.2008Strong NP-hardnessA problem Π is strongly NP-hard if every problem in NP 
an bepolynomially redu
ed to Π in su
h a way that numbers in the redu
edinstan
e are always written in unary.
◮ Knapsa
k is not strongly NP-hard unless P = NP.Theorem 8.5Let p be a polynomial and Π be an NP-hard minimization problem su
hthat the obje
tive fun
tion fΠ is integer valued and on any instan
e I,

OPT (I) < p(|Iu|). If Π admits an FPTAS, then it also admits apseudo-polynomial time algorithm.
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Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.5Suppose there is an FPTAS for Π whose running time on instan
e I anderror parameter ǫ is q(|I|, 1/ǫ), where q is a polynomial. Next, set
ǫ = 1/p(|Iu|), and run the FPTAS. By de�nition it produ
es a solutionwith obje
tive fun
tion value:

(1 + ǫ)OPT (I) < OPT (I) + ǫp(|Iu|) = OPT (I) + 1Thus, the solution is optimal and the running time is bounded by apolynomial in |Iu|. Therefore we have obtained a pseudo-polynomial timealgorithm for Π and the proof is 
omplete.
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Approximation Algorithms (p. 68-83) 21.2.2008Bin Pa
kingGiven n items with sizes a1, ..., an ∈ (0, 1], �nd a pa
king in unit-sizedbins that minimizes the number of bins used.First-Fit algorithm is a fa
tor 2 approximation algorithm for bin pa
king.The idea of this algorithm is to put ea
h item to the �rst possible bin it�ts into and else open a new bin. If the algorithm uses m bins, then atleast m − 1 bins are more than half full. Therefore,
OPT ≥ Σn

i=1ai >
m − 1

2
⇒ m − 1 < 2OPT ⇒ m ≤ 2OPT

Petri Savola 11



Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.2For any ǫ > 0, there is no approximation algorithm having a guarantee of
3/2 − ǫ for the bin pa
king problem, assuming P 6= NP.If we were able to �nd su
h an algorithm for bin pa
king, then we wouldbe able to solve the NP-hard number partitioning problem in thefollowing way:

◮ Let the bin size be 1
2Σiai.

◮ If n items 
an be pa
ked into 2 bins of that size, then we have asolution for the number partitioning problem.
◮ Thus, if we had a 3/2− ǫ approximation algorithm, it would �nd theoptimal pa
king.
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Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.3For any ǫ, 0 < ǫ ≤ 1/2, there is an algorithm Aǫ that runs in timepolynomial in n and �nds a pa
king using at most (1 + 2ǫ)OPT + 1 bins.
Proof. Let I denote the given instan
e, and I ′ denote the instan
eobtained by dis
arding items of size < ǫ from I. By Lemma 9.5 it ispossible to �nd a pa
king for I ′ using at most (1 + ǫ)OPT (I ′) bins.Next, the remaining items (< ǫ size) are pa
ked in First-Fit manner intothe bins. If no additional bins are needed, then a pa
king in
(1 + ǫ)OPT (I ′) ≤ (1 + ǫ)OPT (I) bins has been obtained.Else, let M be the total number of bins used. All but the last bin mustbe full to the extent of at least 1 − ǫ. Therefore, the sum of the itemsizes in I is at least (M − 1)(1 − ǫ) ≤ OPT . Hen
e,
M ≤ OPT

1−ǫ
+ 1 ≤ (1 + 2ǫ)OPT + 1, be
ause ǫ ≤ 1/2.Petri Savola 13



Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.4Let ǫ > 0 be �xed, and let K be a �xed nonnegative integer. Considerthe restri
tion of the bin pa
king problem to instan
es in whi
h ea
h itemis of size at least ǫ and the number of distin
t item sizes is K. There is apolynomial time algorithm that optimally solves this restri
ted problem.
Proof. The number of items in a bin is bounded by ⌊1/ǫ⌋ = M .Therefore, the number of di�erent bin types is bounded by R =

(

M+K
M

).The number of bins used is at most n and hen
e the number of possiblepa
kings is bounded by P =
(

n+R
R

), whi
h is polynomial in n (a
tually
O(nR)). One 
an enumerate these in polynomial time and pi
k theoptimum.
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Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.5
Let ǫ > 0 be �xed. Consider the restri
tion of the bin pa
king problem toinstan
es in whi
h ea
h item is of size at least ǫ. There is a PTAS thatsolves this restri
ted problem within a fa
tor of (1 + ǫ).
Proof. In the book.
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Approximation Algorithms (p. 68-83) 21.2.2008Bin Pa
king PTAS algorithm
◮ Remove items of size < ǫ.
◮ Round to obtain 
onstant number of item sizes.
◮ Find optimal pa
king.
◮ Use this pa
king for the original item sizes.
◮ Pa
k items of size < ǫ using First-Fit.Note that this algorithm is not any kind of pra
ti
al solution to the binpa
king problem, but in theory it's ni
e, be
ause it works in polyomialtime.
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Approximation Algorithms (p. 68-83) 21.2.2008Minimum Makespan S
heduling
Given pro
essing time for n jobs, p1, ..., pn, and an integer m, �nd anassignment of the jobs to m identi
al ma
hines so that the 
ompletiontime, also 
alled the makespan, is minimized.It is easy to �nd a fa
tor 2 algorithm for the problem. The idea is tos
hedule the jobs one by one, in any order, and assign ea
h job to thema
hine with least amount of work so far.Let startj be the time when the last job (j) is started. Clearly
startj ≤ 1

m
Σipi ≤ OPT and pj ≤ OPT , thus startj + pj ≤ 2OPT .
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Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan
◮ Minimum makespan problem is strongly NP-hard.
◮ Thus, it does not admit an FPTAS if P 6= NP.
◮ The problem 
an be redu
ed to bin pa
king.There exists a s
hedule with makespan t if and only if n obje
ts ofsizes I = {p1, ..., pn} 
an be pa
ked into m bins of 
apa
ity t ea
h.Let bins(I, t) represent the minimum number of bins of size trequired to pa
k obje
ts in set I. Then, the minimum makespan isgiven by min{t|bins(I, t) ≤ M}.
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Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan (
ontinued)The idea is the following:
◮ LB = max{ 1

m
Σipi,maxi{pi}}.

◮ Perform a binary sear
h between upper and lower bounds ofminimum makespan (LB ≤ OPT ≤ 2LB). This sear
h should beterminated at some point to guarantee polynomial running time.
◮ There exists a dynami
 programming algorithm that solves therestri
ted bin pa
king problem in O(n2k) time, where k is thenumber of obje
t sizes.
◮ Round the obje
t sizes to gain bounded number of di�erent sizesallowing the use of the bin pa
king algorithm.The result of this approa
h is a valid s
hedule having makespan at most

(1 + 3ǫ)OPT in time O(n2k⌈log2
1
ǫ
⌉), where k = ⌈log1+ǫ

1
ǫ
⌉.Petri Savola 19



Approximation Algorithms (p. 68-83) 21.2.2008Summary
◮ The idea was to obtain polynomial time algorithms for NP-hardproblems su
h that we 
an de
ide the error parameter and gainspeed for ina

ura
y.
◮ FPTAS for knapsa
k
◮ We showed that a strongly NP-hard problem does not allow anFPTAS
◮ PTAS for bin pa
king
◮ The red
ution from minimum makespan problem to bin pa
king
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