
Approximation Algorithms (p. 68-83) 21.2.2008
Approximation Algorithms (p. 68-83)Petri SavolaDepartment of Information and Computer S
ien
e, TKK21.2.2008

Petri Savola 1

Approximation Algorithms (p. 68-83) 21.2.2008Outline
◮ Approximation s
heme de�nitions
◮ Knapsa
k
◮ Strong NP-hardness
◮ Bin Pa
king
◮ Minimum Makespan S
heduling

Petri Savola 2

Approximation Algorithms (p. 68-83) 21.2.2008Basi
 de�nitions
◮ Let Π be an NP-hard optimization (minimization) problem withobje
tive fun
tion fΠ. Algorithm A is an approximation s
heme for

Π if on input (I, ǫ), where I is an instan
e of Π and ǫ > 0 is an errorparameter, it outputs a solution s su
h that fΠ(I, s) ≤ (1 + ǫ)OPT .
◮ A is said to be a polynomial time approximation s
heme (PTAS), iffor ea
h �xed ǫ > 0, its running time is bounded by a polynomial inthe size of instan
e I.
◮ If the running time of A is bounded by a polynomial in the size ofinstan
e I and 1/ǫ then A is said to be a fully polynomial timeapproximation s
heme (FPTAS).

Petri Savola 3

Approximation Algorithms (p. 68-83) 21.2.2008Knapsa
k ProblemGiven a set S = {a1, ..., an} of obje
ts, with spe
i�ed sizes and pro�ts,
size(ai) ∈ Z+ and profit(ai) ∈ Z+, and a
apa
ity B ∈ Z+, �nd asubset of obje
ts whose total size is bounded by B and total pro�t ismaximized.

◮ An algorithm is said to be pseudo-polynomial if its running time isbounded by a polynomial in |Iu|, where |Iu| is the unary size ofinstan
e I.
◮ Knapsa
k problem allows a pseudo-polynomial time algorithm.
◮ This fa
t is used to
reate a FPTAS for Knapsa
k.

Petri Savola 4

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
kLet A(i, j) be the maximum pro�t that
an be attained with size lessthan or equal to j using items up to i.
◮ A(0, j) = 0

◮ A(i, 0) = 0

◮ A(i, j) = A(i − 1, j) if size(ai) > j

◮ A(i, j) = max{A(i − 1, j), profit(ai) + A(i − 1, j − size(ai))} if
size(ai) ≤ jUsing this algorithm, the solution to the Knapsa
k problem
an be foundin time O(nB) simply by
al
ulating A(n,B).

Petri Savola 5

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
k (
ontinued)
◮ Problem: pro�ts of obje
ts are not bounded by a polynomial in n.
◮ Solution: ignore some number of least signi�
ant bits of pro�ts!
◮ Result: Pro�t of at least (1 − ǫ)OPT in time bounded by apolynomial in n and 1/ǫ (Theorem 8.4).

Petri Savola 6

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsa
k (
ontinued)
◮ Let P be the pro�t of the most pro�table item.
◮ Given ǫ > 0, let K = ǫP

n
.

◮ For ea
h obje
t ai, de�ne profit′(ai) = ⌊profit(ai)
K

⌋.
◮ Using profit′ as the pro�t fun
tion, �nd the most pro�table set S.
◮ Output S.

Petri Savola 7

Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.4Let O denote the optimal set. It is easy to see that
K · profit′(ai) = profit(ai) − Ci, where 0 ≤ Ci < K. Thus,
K · profit′(O) ≥ profit(O)−nK ⇒ profit(O)−K · profit′(O) ≤ nK.The dynami
 programming step gives us the optimal solution and thus
profit(S) ≥ K · profit′(O) ≥ profit(O) − nK = OPT − ǫP ≥
OPT − ǫOPT = (1 − ǫ)OPT .The running time of the algorithm without division by K is O(nB). Atrivial upper bound for this is O(n2P). By ignoring the least signi�
antbits (division by K) we get running time O(n2⌊ P

K
⌋) = O(n2⌊n

ǫ
⌋), whi
his polynomial in n and 1/ǫ, proving the theorem.

Petri Savola 8

Approximation Algorithms (p. 68-83) 21.2.2008Strong NP-hardnessA problem Π is strongly NP-hard if every problem in NP
an bepolynomially redu
ed to Π in su
h a way that numbers in the redu
edinstan
e are always written in unary.
◮ Knapsa
k is not strongly NP-hard unless P = NP.Theorem 8.5Let p be a polynomial and Π be an NP-hard minimization problem su
hthat the obje
tive fun
tion fΠ is integer valued and on any instan
e I,

OPT (I) < p(|Iu|). If Π admits an FPTAS, then it also admits apseudo-polynomial time algorithm.
Petri Savola 9

Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.5Suppose there is an FPTAS for Π whose running time on instan
e I anderror parameter ǫ is q(|I|, 1/ǫ), where q is a polynomial. Next, set
ǫ = 1/p(|Iu|), and run the FPTAS. By de�nition it produ
es a solutionwith obje
tive fun
tion value:

(1 + ǫ)OPT (I) < OPT (I) + ǫp(|Iu|) = OPT (I) + 1Thus, the solution is optimal and the running time is bounded by apolynomial in |Iu|. Therefore we have obtained a pseudo-polynomial timealgorithm for Π and the proof is
omplete.
Petri Savola 10

Approximation Algorithms (p. 68-83) 21.2.2008Bin Pa
kingGiven n items with sizes a1, ..., an ∈ (0, 1], �nd a pa
king in unit-sizedbins that minimizes the number of bins used.First-Fit algorithm is a fa
tor 2 approximation algorithm for bin pa
king.The idea of this algorithm is to put ea
h item to the �rst possible bin it�ts into and else open a new bin. If the algorithm uses m bins, then atleast m − 1 bins are more than half full. Therefore,
OPT ≥ Σn

i=1ai >
m − 1

2
⇒ m − 1 < 2OPT ⇒ m ≤ 2OPT

Petri Savola 11

Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.2For any ǫ > 0, there is no approximation algorithm having a guarantee of
3/2 − ǫ for the bin pa
king problem, assuming P 6= NP.If we were able to �nd su
h an algorithm for bin pa
king, then we wouldbe able to solve the NP-hard number partitioning problem in thefollowing way:

◮ Let the bin size be 1
2Σiai.

◮ If n items
an be pa
ked into 2 bins of that size, then we have asolution for the number partitioning problem.
◮ Thus, if we had a 3/2− ǫ approximation algorithm, it would �nd theoptimal pa
king.

Petri Savola 12

Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.3For any ǫ, 0 < ǫ ≤ 1/2, there is an algorithm Aǫ that runs in timepolynomial in n and �nds a pa
king using at most (1 + 2ǫ)OPT + 1 bins.
Proof. Let I denote the given instan
e, and I ′ denote the instan
eobtained by dis
arding items of size < ǫ from I. By Lemma 9.5 it ispossible to �nd a pa
king for I ′ using at most (1 + ǫ)OPT (I ′) bins.Next, the remaining items (< ǫ size) are pa
ked in First-Fit manner intothe bins. If no additional bins are needed, then a pa
king in
(1 + ǫ)OPT (I ′) ≤ (1 + ǫ)OPT (I) bins has been obtained.Else, let M be the total number of bins used. All but the last bin mustbe full to the extent of at least 1 − ǫ. Therefore, the sum of the itemsizes in I is at least (M − 1)(1 − ǫ) ≤ OPT . Hen
e,
M ≤ OPT

1−ǫ
+ 1 ≤ (1 + 2ǫ)OPT + 1, be
ause ǫ ≤ 1/2.Petri Savola 13

Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.4Let ǫ > 0 be �xed, and let K be a �xed nonnegative integer. Considerthe restri
tion of the bin pa
king problem to instan
es in whi
h ea
h itemis of size at least ǫ and the number of distin
t item sizes is K. There is apolynomial time algorithm that optimally solves this restri
ted problem.
Proof. The number of items in a bin is bounded by ⌊1/ǫ⌋ = M .Therefore, the number of di�erent bin types is bounded by R =

(

M+K
M

).The number of bins used is at most n and hen
e the number of possiblepa
kings is bounded by P =
(

n+R
R

), whi
h is polynomial in n (a
tually
O(nR)). One
an enumerate these in polynomial time and pi
k theoptimum.

Petri Savola 14

Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.5
Let ǫ > 0 be �xed. Consider the restri
tion of the bin pa
king problem toinstan
es in whi
h ea
h item is of size at least ǫ. There is a PTAS thatsolves this restri
ted problem within a fa
tor of (1 + ǫ).
Proof. In the book.

Petri Savola 15

Approximation Algorithms (p. 68-83) 21.2.2008Bin Pa
king PTAS algorithm
◮ Remove items of size < ǫ.
◮ Round to obtain
onstant number of item sizes.
◮ Find optimal pa
king.
◮ Use this pa
king for the original item sizes.
◮ Pa
k items of size < ǫ using First-Fit.Note that this algorithm is not any kind of pra
ti
al solution to the binpa
king problem, but in theory it's ni
e, be
ause it works in polyomialtime.

Petri Savola 16

Approximation Algorithms (p. 68-83) 21.2.2008Minimum Makespan S
heduling
Given pro
essing time for n jobs, p1, ..., pn, and an integer m, �nd anassignment of the jobs to m identi
al ma
hines so that the
ompletiontime, also
alled the makespan, is minimized.It is easy to �nd a fa
tor 2 algorithm for the problem. The idea is tos
hedule the jobs one by one, in any order, and assign ea
h job to thema
hine with least amount of work so far.Let startj be the time when the last job (j) is started. Clearly
startj ≤ 1

m
Σipi ≤ OPT and pj ≤ OPT , thus startj + pj ≤ 2OPT .

Petri Savola 17

Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan
◮ Minimum makespan problem is strongly NP-hard.
◮ Thus, it does not admit an FPTAS if P 6= NP.
◮ The problem
an be redu
ed to bin pa
king.There exists a s
hedule with makespan t if and only if n obje
ts ofsizes I = {p1, ..., pn}
an be pa
ked into m bins of
apa
ity t ea
h.Let bins(I, t) represent the minimum number of bins of size trequired to pa
k obje
ts in set I. Then, the minimum makespan isgiven by min{t|bins(I, t) ≤ M}.

Petri Savola 18

Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan (
ontinued)The idea is the following:
◮ LB = max{ 1

m
Σipi,maxi{pi}}.

◮ Perform a binary sear
h between upper and lower bounds ofminimum makespan (LB ≤ OPT ≤ 2LB). This sear
h should beterminated at some point to guarantee polynomial running time.
◮ There exists a dynami
 programming algorithm that solves therestri
ted bin pa
king problem in O(n2k) time, where k is thenumber of obje
t sizes.
◮ Round the obje
t sizes to gain bounded number of di�erent sizesallowing the use of the bin pa
king algorithm.The result of this approa
h is a valid s
hedule having makespan at most

(1 + 3ǫ)OPT in time O(n2k⌈log2
1
ǫ
⌉), where k = ⌈log1+ǫ

1
ǫ
⌉.Petri Savola 19

Approximation Algorithms (p. 68-83) 21.2.2008Summary
◮ The idea was to obtain polynomial time algorithms for NP-hardproblems su
h that we
an de
ide the error parameter and gainspeed for ina

ura
y.
◮ FPTAS for knapsa
k
◮ We showed that a strongly NP-hard problem does not allow anFPTAS
◮ PTAS for bin pa
king
◮ The red
ution from minimum makespan problem to bin pa
king

Petri Savola 20

