
Approximation Algorithms (p. 68-83) 21.2.2008
Approximation Algorithms (p. 68-83)Petri SavolaDepartment of Information and Computer Siene, TKK21.2.2008

Petri Savola 1

Approximation Algorithms (p. 68-83) 21.2.2008Outline
◮ Approximation sheme de�nitions
◮ Knapsak
◮ Strong NP-hardness
◮ Bin Paking
◮ Minimum Makespan Sheduling

Petri Savola 2

Approximation Algorithms (p. 68-83) 21.2.2008Basi de�nitions
◮ Let Π be an NP-hard optimization (minimization) problem withobjetive funtion fΠ. Algorithm A is an approximation sheme for

Π if on input (I, ǫ), where I is an instane of Π and ǫ > 0 is an errorparameter, it outputs a solution s suh that fΠ(I, s) ≤ (1 + ǫ)OPT .
◮ A is said to be a polynomial time approximation sheme (PTAS), iffor eah �xed ǫ > 0, its running time is bounded by a polynomial inthe size of instane I.
◮ If the running time of A is bounded by a polynomial in the size ofinstane I and 1/ǫ then A is said to be a fully polynomial timeapproximation sheme (FPTAS).

Petri Savola 3

Approximation Algorithms (p. 68-83) 21.2.2008Knapsak ProblemGiven a set S = {a1, ..., an} of objets, with spei�ed sizes and pro�ts,
size(ai) ∈ Z+ and profit(ai) ∈ Z+, and a apaity B ∈ Z+, �nd asubset of objets whose total size is bounded by B and total pro�t ismaximized.

◮ An algorithm is said to be pseudo-polynomial if its running time isbounded by a polynomial in |Iu|, where |Iu| is the unary size ofinstane I.
◮ Knapsak problem allows a pseudo-polynomial time algorithm.
◮ This fat is used to reate a FPTAS for Knapsak.

Petri Savola 4

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for KnapsakLet A(i, j) be the maximum pro�t that an be attained with size lessthan or equal to j using items up to i.
◮ A(0, j) = 0

◮ A(i, 0) = 0

◮ A(i, j) = A(i − 1, j) if size(ai) > j

◮ A(i, j) = max{A(i − 1, j), profit(ai) + A(i − 1, j − size(ai))} if
size(ai) ≤ jUsing this algorithm, the solution to the Knapsak problem an be foundin time O(nB) simply by alulating A(n,B).

Petri Savola 5

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsak (ontinued)
◮ Problem: pro�ts of objets are not bounded by a polynomial in n.
◮ Solution: ignore some number of least signi�ant bits of pro�ts!
◮ Result: Pro�t of at least (1 − ǫ)OPT in time bounded by apolynomial in n and 1/ǫ (Theorem 8.4).

Petri Savola 6

Approximation Algorithms (p. 68-83) 21.2.2008FPTAS for Knapsak (ontinued)
◮ Let P be the pro�t of the most pro�table item.
◮ Given ǫ > 0, let K = ǫP

n
.

◮ For eah objet ai, de�ne profit′(ai) = ⌊profit(ai)
K

⌋.
◮ Using profit′ as the pro�t funtion, �nd the most pro�table set S.
◮ Output S.

Petri Savola 7

Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.4Let O denote the optimal set. It is easy to see that
K · profit′(ai) = profit(ai) − Ci, where 0 ≤ Ci < K. Thus,
K · profit′(O) ≥ profit(O)−nK ⇒ profit(O)−K · profit′(O) ≤ nK.The dynami programming step gives us the optimal solution and thus
profit(S) ≥ K · profit′(O) ≥ profit(O) − nK = OPT − ǫP ≥
OPT − ǫOPT = (1 − ǫ)OPT .The running time of the algorithm without division by K is O(nB). Atrivial upper bound for this is O(n2P). By ignoring the least signi�antbits (division by K) we get running time O(n2⌊ P

K
⌋) = O(n2⌊n

ǫ
⌋), whihis polynomial in n and 1/ǫ, proving the theorem.

Petri Savola 8

Approximation Algorithms (p. 68-83) 21.2.2008Strong NP-hardnessA problem Π is strongly NP-hard if every problem in NP an bepolynomially redued to Π in suh a way that numbers in the reduedinstane are always written in unary.
◮ Knapsak is not strongly NP-hard unless P = NP.Theorem 8.5Let p be a polynomial and Π be an NP-hard minimization problem suhthat the objetive funtion fΠ is integer valued and on any instane I,

OPT (I) < p(|Iu|). If Π admits an FPTAS, then it also admits apseudo-polynomial time algorithm.
Petri Savola 9

Approximation Algorithms (p. 68-83) 21.2.2008Proof of Theorem 8.5Suppose there is an FPTAS for Π whose running time on instane I anderror parameter ǫ is q(|I|, 1/ǫ), where q is a polynomial. Next, set
ǫ = 1/p(|Iu|), and run the FPTAS. By de�nition it produes a solutionwith objetive funtion value:

(1 + ǫ)OPT (I) < OPT (I) + ǫp(|Iu|) = OPT (I) + 1Thus, the solution is optimal and the running time is bounded by apolynomial in |Iu|. Therefore we have obtained a pseudo-polynomial timealgorithm for Π and the proof is omplete.
Petri Savola 10

Approximation Algorithms (p. 68-83) 21.2.2008Bin PakingGiven n items with sizes a1, ..., an ∈ (0, 1], �nd a paking in unit-sizedbins that minimizes the number of bins used.First-Fit algorithm is a fator 2 approximation algorithm for bin paking.The idea of this algorithm is to put eah item to the �rst possible bin it�ts into and else open a new bin. If the algorithm uses m bins, then atleast m − 1 bins are more than half full. Therefore,
OPT ≥ Σn

i=1ai >
m − 1

2
⇒ m − 1 < 2OPT ⇒ m ≤ 2OPT

Petri Savola 11

Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.2For any ǫ > 0, there is no approximation algorithm having a guarantee of
3/2 − ǫ for the bin paking problem, assuming P 6= NP.If we were able to �nd suh an algorithm for bin paking, then we wouldbe able to solve the NP-hard number partitioning problem in thefollowing way:

◮ Let the bin size be 1
2Σiai.

◮ If n items an be paked into 2 bins of that size, then we have asolution for the number partitioning problem.
◮ Thus, if we had a 3/2− ǫ approximation algorithm, it would �nd theoptimal paking.

Petri Savola 12

Approximation Algorithms (p. 68-83) 21.2.2008Theorem 9.3For any ǫ, 0 < ǫ ≤ 1/2, there is an algorithm Aǫ that runs in timepolynomial in n and �nds a paking using at most (1 + 2ǫ)OPT + 1 bins.
Proof. Let I denote the given instane, and I ′ denote the instaneobtained by disarding items of size < ǫ from I. By Lemma 9.5 it ispossible to �nd a paking for I ′ using at most (1 + ǫ)OPT (I ′) bins.Next, the remaining items (< ǫ size) are paked in First-Fit manner intothe bins. If no additional bins are needed, then a paking in
(1 + ǫ)OPT (I ′) ≤ (1 + ǫ)OPT (I) bins has been obtained.Else, let M be the total number of bins used. All but the last bin mustbe full to the extent of at least 1 − ǫ. Therefore, the sum of the itemsizes in I is at least (M − 1)(1 − ǫ) ≤ OPT . Hene,
M ≤ OPT

1−ǫ
+ 1 ≤ (1 + 2ǫ)OPT + 1, beause ǫ ≤ 1/2.Petri Savola 13

Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.4Let ǫ > 0 be �xed, and let K be a �xed nonnegative integer. Considerthe restrition of the bin paking problem to instanes in whih eah itemis of size at least ǫ and the number of distint item sizes is K. There is apolynomial time algorithm that optimally solves this restrited problem.
Proof. The number of items in a bin is bounded by ⌊1/ǫ⌋ = M .Therefore, the number of di�erent bin types is bounded by R =

(

M+K
M

).The number of bins used is at most n and hene the number of possiblepakings is bounded by P =
(

n+R
R

), whih is polynomial in n (atually
O(nR)). One an enumerate these in polynomial time and pik theoptimum.

Petri Savola 14

Approximation Algorithms (p. 68-83) 21.2.2008Lemma 9.5
Let ǫ > 0 be �xed. Consider the restrition of the bin paking problem toinstanes in whih eah item is of size at least ǫ. There is a PTAS thatsolves this restrited problem within a fator of (1 + ǫ).
Proof. In the book.

Petri Savola 15

Approximation Algorithms (p. 68-83) 21.2.2008Bin Paking PTAS algorithm
◮ Remove items of size < ǫ.
◮ Round to obtain onstant number of item sizes.
◮ Find optimal paking.
◮ Use this paking for the original item sizes.
◮ Pak items of size < ǫ using First-Fit.Note that this algorithm is not any kind of pratial solution to the binpaking problem, but in theory it's nie, beause it works in polyomialtime.

Petri Savola 16

Approximation Algorithms (p. 68-83) 21.2.2008Minimum Makespan Sheduling
Given proessing time for n jobs, p1, ..., pn, and an integer m, �nd anassignment of the jobs to m idential mahines so that the ompletiontime, also alled the makespan, is minimized.It is easy to �nd a fator 2 algorithm for the problem. The idea is toshedule the jobs one by one, in any order, and assign eah job to themahine with least amount of work so far.Let startj be the time when the last job (j) is started. Clearly
startj ≤ 1

m
Σipi ≤ OPT and pj ≤ OPT , thus startj + pj ≤ 2OPT .

Petri Savola 17

Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan
◮ Minimum makespan problem is strongly NP-hard.
◮ Thus, it does not admit an FPTAS if P 6= NP.
◮ The problem an be redued to bin paking.There exists a shedule with makespan t if and only if n objets ofsizes I = {p1, ..., pn} an be paked into m bins of apaity t eah.Let bins(I, t) represent the minimum number of bins of size trequired to pak objets in set I. Then, the minimum makespan isgiven by min{t|bins(I, t) ≤ M}.

Petri Savola 18

Approximation Algorithms (p. 68-83) 21.2.2008PTAS for minimum makespan (ontinued)The idea is the following:
◮ LB = max{ 1

m
Σipi,maxi{pi}}.

◮ Perform a binary searh between upper and lower bounds ofminimum makespan (LB ≤ OPT ≤ 2LB). This searh should beterminated at some point to guarantee polynomial running time.
◮ There exists a dynami programming algorithm that solves therestrited bin paking problem in O(n2k) time, where k is thenumber of objet sizes.
◮ Round the objet sizes to gain bounded number of di�erent sizesallowing the use of the bin paking algorithm.The result of this approah is a valid shedule having makespan at most

(1 + 3ǫ)OPT in time O(n2k⌈log2
1
ǫ
⌉), where k = ⌈log1+ǫ

1
ǫ
⌉.Petri Savola 19

Approximation Algorithms (p. 68-83) 21.2.2008Summary
◮ The idea was to obtain polynomial time algorithms for NP-hardproblems suh that we an deide the error parameter and gainspeed for inauray.
◮ FPTAS for knapsak
◮ We showed that a strongly NP-hard problem does not allow anFPTAS
◮ PTAS for bin paking
◮ The redution from minimum makespan problem to bin paking

Petri Savola 20

