Approximation Algorithms (p. 68-83) 21.2.2008

Approximation Algorithms (p. 68-83)

Petri Savola

Department of Information and Computer Science, TKK

21.2.2008

Petri Savola 1

Approximation Algorithms (p. 68-83) 21.2.2008
Outline

Approximation scheme definitions
Knapsack

Strong NP-hardness

Bin Packing

vV v v v Yy

Minimum Makespan Scheduling

Approximation Algorithms (p. 68-83) 21.2.2008

Basic definitions

> Let IT be an NP-hard optimization (minimization) problem with
objective function fr1. Algorithm A is an approximation scheme for
IT if on input (I, €), where I is an instance of IT and ¢ > 0 is an error
parameter, it outputs a solution s such that fi(Z,s) < (1+¢€)OPT.

> A is said to be a polynomial time approximation scheme (PTAS), if
for each fixed € > 0, its running time is bounded by a polynomial in
the size of instance I.

» If the running time of A is bounded by a polynomial in the size of

instance I and 1/¢ then A is said to be a fully polynomial time
approximation scheme (FPTAS).

Approximation Algorithms (p. 68-83) 21.2.2008

Knapsack Problem

Given a set S = {ay,...,a,} of objects, with specified sizes and profits,
size(a;) € ZT and profit(a;) € Z1, and a capacity B € Z*, find a
subset of objects whose total size is bounded by B and total profit is
maximized.

» An algorithm is said to be pseudo-polynomial if its running time is
bounded by a polynomial in |I,,|, where |I,,| is the unary size of
instance [.

» Knapsack problem allows a pseudo-polynomial time algorithm.
» This fact is used to create a FPTAS for Knapsack.

FPTAS for Knapsack

Let A(i,7) be the maximum profit that can be attained with size less
than or equal to j using items up to i.

0
,0)=0
> A(i,J) = A(i — 1,7) if size(a;) > j

7) max{A(z —1,7),profit(a;) + A(i — 1,j — size(a;))} if

Using this algorithm, the solution to the Knapsack problem can be found
in time O(nB) simply by calculating A(n, B).

FPTAS for Knapsack (continued)

» Problem: profits of objects are not bounded by a polynomial in n.
» Solution: ignore some number of least significant bits of profits!

> Result: Profit of at least (1 — €)OPT in time bounded by a
polynomial in n and 1/e (Theorem 8.4).

Petri Savola 6

FPTAS for Knapsack (continued)

v

Let P be the profit of the most profitable item.
Given € > 0, let K = %.

v

v

For each object a;, define profit'(a;) = L%’WJ

v

Using profit’ as the profit function, find the most profitable set S.
Output S.

v

Proof of Theorem 8.4

Let O denote the optimal set. It is easy to see that

K -profit'(a;) = profit(a;) — C;, where 0 < C; < K. Thus,

K -profit'(O) > profit(O) —nK = profit(O) — K - profit'(O) < nK.
The dynamic programming step gives us the optimal solution and thus
profit(S) > K - profit'(O) > profit(O) — nK = OPT — P >

OPT — cOPT = (1 — €)OPT.

The running time of the algorithm without division by K is O(nB). A
trivial upper bound for this is O(n2P). By ignoring the least significant
bits (division by K) we get running time O(n*| £ |) = O(n?|2]), which
is polynomial in n and 1/¢, proving the theorem.

Petri Savola 8

Strong NP-hardness

A problem IT is strongly NP-hard if every problem in NP can be
polynomially reduced to IT in such a way that numbers in the reduced
instance are always written in unary.

» Knapsack is not strongly NP-hard unless P = NP.

Theorem 8.5

Let p be a polynomial and II be an NP-hard minimization problem such
that the objective function fiy is integer valued and on any instance I,
OPT(I) < p(|I,]). If IT admits an FPTAS, then it also admits a
pseudo-polynomial time algorithm.

Petri Savola 9

Proof of Theorem 8.5

Suppose there is an FPTAS for IT whose running time on instance I and
error parameter € is g(|I|,1/¢), where ¢ is a polynomial. Next, set

e = 1/p(|1,]), and run the FPTAS. By definition it produces a solution
with objective function value:

(1+€)OPT(I) < OPT(I) + ep(|1.]) = OPT(I) + 1

Thus, the solution is optimal and the running time is bounded by a
polynomial in |I,,|. Therefore we have obtained a pseudo-polynomial time
algorithm for IT and the proof is complete.

Petri Savola 10

Bin Packing

Given n items with sizes ay, ..., a,, € (0,1], find a packing in unit-sized
bins that minimizes the number of bins used.

First-Fit algorithm is a factor 2 approximation algorithm for bin packing.
The idea of this algorithm is to put each item to the first possible bin it
fits into and else open a new bin. If the algorithm uses m bins, then at
least m — 1 bins are more than half full. Therefore,

OPT >3 ja;> = = m — 1< 20PT = m < 20PT

Theorem 9.2

For any € > 0, there is no approximation algorithm having a guarantee of
3/2 — e for the bin packing problem, assuming P # NP.
If we were able to find such an algorithm for bin packing, then we would
be able to solve the NP-hard number partitioning problem in the
following way:
> Let the bin size be 1%;a;.
» If n items can be packed into 2 bins of that size, then we have a
solution for the number partitioning problem.
» Thus, if we had a 3/2 — e approximation algorithm, it would find the
optimal packing.

Theorem 9.3

For any ¢, 0 < € < 1/2, there is an algorithm A, that runs in time
polynomial in n and finds a packing using at most (1 4+ 2¢)OPT + 1 bins.

Proof. Let I denote the given instance, and I’ denote the instance
obtained by discarding items of size < € from I. By Lemma 9.5 it is
possible to find a packing for I’ using at most (1 4+ €)OPT(I') bins.
Next, the remaining items (< € size) are packed in First-Fit manner into
the bins. If no additional bins are needed, then a packing in
(14+€OPT(I') < (14 €)OPT(I) bins has been obtained.

Else, let M be the total number of bins used. All but the last bin must
be full to the extent of at least 1 — €. Therefore, the sum of the item
sizes in I is at least (M — 1)(1 —€) < OPT. Hence,

M < 9P 11 < (1+42¢)OPT + 1, because € < 1/2.

Lemma 9.4

Let € > 0 be fixed, and let K be a fixed nonnegative integer. Consider
the restriction of the bin packing problem to instances in which each item
is of size at least € and the number of distinct item sizes is K. There is a
polynomial time algorithm that optimally solves this restricted problem.

Proof. The number of items in a bin is bounded by |1/¢| = M.
Therefore, the number of different bin types is bounded by R = (
The number of bins used is at most n and hence the number of possible
packings is bounded by P = (";R), which is polynomial in n (actually
O(nf)). One can enumerate these in polynomial time and pick the

optimum.

M)

Petri Savola

Approximation Algorithms (p. 68-83) 21.2.2008

Lemma 9.5

Let € > 0 be fixed. Consider the restriction of the bin packing problem to
instances in which each item is of size at least €. There is a PTAS that
solves this restricted problem within a factor of (1 + ¢).

Proof. In the book.

Bin Packing PTAS algorithm

Remove items of size < e.

Round to obtain constant number of item sizes.

>
>

» Find optimal packing.

» Use this packing for the original item sizes.
>

Pack items of size < € using First-Fit.

Note that this algorithm is not any kind of practical solution to the bin
packing problem, but in theory it's nice, because it works in polyomial
time.

Petri Savola 16

Minimum Makespan Scheduling

Given processing time for n jobs, p1, ..., pn, and an integer m, find an
assignment of the jobs to m identical machines so that the completion
time, also called the makespan, is minimized.

It is easy to find a factor 2 algorithm for the problem. The idea is to
schedule the jobs one by one, in any order, and assign each job to the
machine with least amount of work so far.

Let start; be the time when the last job (j) is started. Clearly
start; < %Zipi < OPT and p; < OPT, thus start; + p; < 20PT.

Petri Savola 17

Approximation Algorithms (p. 68-83) 21.2.2008

PTAS for minimum makespan

» Minimum makespan problem is strongly NP-hard.
» Thus, it does not admit an FPTAS if P £ NP.

» The problem can be reduced to bin packing.
There exists a schedule with makespan t if and only if n objects of
sizes I = {p1,...,pn} can be packed into m bins of capacity ¢ each.
Let bins(I,t) represent the minimum number of bins of size ¢
required to pack objects in set I. Then, the minimum makespan is
given by min{t|bins(I,t) < M}.

Petri Savola

Approximation Algorithms (p. 68-83) 21.2.2008

PTAS for minimum makespan (continued)

The idea is the following:

> LB = max{5%;p;, maz{p:}}.

» Perform a binary search between upper and lower bounds of
minimum makespan (LB < OPT < 2LB). This search should be
terminated at some point to guarantee polynomial running time.

» There exists a dynamic programming algorithm that solves the
restricted bin packing problem in O(n2¥) time, where k is the
number of object sizes.

» Round the object sizes to gain bounded number of different sizes
allowing the use of the bin packing algorithm.

The result of this approach is a valid schedule having makespan at most
(14 3€)OPT in time O(n**[log,1]), where k = [logi4c1].

Petri Savola 19

Approximation Algorithms (p. 68-83) 21.2.2008

Summary

» The idea was to obtain polynomial time algorithms for NP-hard
problems such that we can decide the error parameter and gain
speed for inaccuracy.

» FPTAS for knapsack

» \We showed that a strongly NP-hard problem does not allow an
FPTAS

» PTAS for bin packing

» The redcution from minimum makespan problem to bin packing

Petri Savola 20

