Cuts and Centers

Olli Pottonen olli.pottonen@tkk.fi

February 15, 2008

Cuts: introduction

- Connected, undirected graph (V, E) with weight function w on edges
- Cut: edges between V' and $V \setminus V'$
- max—flow—min—cut theorem
- Multiway cut: given a set $\{s_1, \ldots, s_k\} \subseteq V$ of terminals, disconnect them from each other by removing a set of edges with minimum weight
- *Minimum k-cut*: Divide G into k connected components by removing a set of edges with minimum weight

Cuts: complexity

- Multiway cut is NP-hard for any $k\geq 3$
- Minimum k-cut solvable in $O(n^{k^2})$, NP-hard for arbitrary k
- Both approximable to factor 2-2/k

Approximating multiway cut

- Algorithm:
 - 1. For i = 1, ..., k, compute a minimum weight isolating cut C_i for s_i 2. Discard the heaviest cut and output union of the rest
- Let $A = \bigcup_i A_i$ be the optimum cut such that A_i isolates c_i . $\sum_{i=1}^k w(A_i) = 2w(A)$, since any $e \in A$ belongs to two cuts A_i, A_j . For any $i, w(C_i) \leq w(A_i)$. Discarding heaviest of C_i decreases the weight by factor 1 - 1/k. Hence: approximating factor 2 - 2/k.

Gomory-Hu trees

- Approximating *k*-cuts is more difficult
- Consider edge-weighted graph G = (V, E, w). Tree T = (V, E', w') is Gomory-Hu tree, if
 - for any $u, v \in V$, weights of minimum u v cuts in G and T are equal
 - Any $e \in E'$ divides T into two components: S, \overline{S} . For any e, weight of the cut (S, \overline{S}) in G is equal to weight of e in T
- Constructing Gomory-Hu trees is an interesting problem, see exercises of Section 4.3 in Vazirani's book

Approximating minimum *k*-cut

- Algorithm:
 - 1. Compute Gomory-Hu tree T for G
 - 2. Output the cuts of G associated with k-1 lightest edges of T
- Approximating factor 2 2/k as shown here:
- Let $A = \bigcup_i A_i$ be the optimum k-cut, which divides V into V_1, \ldots, V_k . As before, $\sum_{i=1}^k w(A_i) = 2w(A)$. Let A_k be the heaviest cut. If, for $i = 1, \ldots, k - 1$, we find edge of T with weight $\leq w(A_i)$, the result follows.

Proof continued

 Consider graph with V_i as vertices with edges of T connecting them. Discard edges until a tree remains. Let V_k be the root of the tree (recall that A_k was the heaviest cut). Let e_i be the vertex connecting V_i to its parent. Every e_i corresponds to a cut of G with weight ≤ w(A_i).

k-Center

Metric k-center: Let G = (V, E) be a complete undirected graph with metric edge costs, and k be a positive integer. For v ∈ V, S ⊆ V, let connect(v, S) be the cheapest edge {v, s} for any s ∈ S. Find S with |S| = k so as to minimize max_{v∈V} connect(v, S)

k-Center: inapproximability

- Assuming $P \neq NP$, no polynomial algorithm approximates metric kcenter with factor < 2, and no polynomial algorithm approximates non-metric k-center with factor < $\alpha(k)$ for any computable α .
- Reduce dominating set to k-center: given G, set weight of each edge to
 1, and add edges with weight 2 or α(k) until the graph is complete. If
 dom(G) ≤ k, the new graph has k-certer of cost 1, and otherwise it has
 optimum k-center of cost 2 or α(k).
- Factor 2 is achievable

Approximating *k*-center

- Given graph H, its square H^2 is such that $\{u, v\}$ is edge in H^2 fs a path of length at most 2 connects u and v in H
- Triangle inequality: $\max_{e \in E(H^2)} w(e) \le 2 \max_{e \in E(H)} w(e)$
- Let G_i be a graph with i cheapest edges of G
- Task is to find minimum *i* such that $dom(G_i) \le k$. Let $OPT = cost(e_i)$.

Approximating k-center

- Theorem: if I is independent set in H^2 , $|I| \leq \operatorname{dom}(H)$.
- Algorithm:
 - 1. Construct $G_1^2, G_2^2, \ldots, G_m^2$
 - 2. For each G_i , construct maximal independent set I
 - 3. Return M_j with smallest j such that $|M_j| \leq k$
- Lemma: $\operatorname{cost}(e_j) \leq OPT$.
- \bullet Theorem: algorithm has approximating factor 2

Weighted *w*-center

(Vazirani calls these weighted k-centers)

- k-center: center consists of at most k nodes
- Weighted W-center: center has weight at most W
- Small modification of algorithm necessary: after constructing the maximal independent set M_j , replace each vertex with lightest neighbour
- Approximating factor 3