Semidefinite Programming

Pekka Orponen

T-79.7001 Postgraduate Course on Theoretical Computer Science

24.4.2008

ヘロト 人間 とくほ とくほとう

三 のへの

T-79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Outline

- 1. Strict Quadratic Programs and Vector Programs
 - Strict quadratic programs
 - The vector program relaxation
- 2. Semidefinite Programs
 - Vector programs as matrix linear programs
 - Properties of semidefinite matrices
 - From vector programs to semidefinite programs

< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

.⊒ . ►

- Notes on computation
- 3. Randomised Rounding of Vector Programs
 - Randomised rounding for MAX CUT

1. Strict Quadratic Programs and Vector Programs

- A quadratic program concerns optimising a quadratic function of integer variables, with quadratic constraints.
- A quadratic program is strict if it contains no linear terms, i.e. each monomial appearing in it is either constant or of degree 2.
- E.g. a strict quadratic program for weighted MAX CUT:
 - Given a weighted graph G = (N, E, w), $N = [n] = \{1, \dots, n\}$.
 - ▶ Associate to each vertex $i \in N$ a variable $y_i \in \{+1, -1\}$. A cut (S, \overline{S}) is determined as $S = \{i \mid y_i = +1\}$, $\overline{S} = \{i \mid y_i = -1\}$.
 - ► The program:

$$\max \frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} (1 - y_i y_j)$$

s.t. $y_i^2 = 1, \quad i \in N$
 $y_i \in \mathbb{Z}, \quad i \in N.$

(日)

T-79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

The vector program relaxation

- Given a strict quadratic program on *n* variables *y_i*, relax the variables into *n*-dimensional vectors *v_i* ∈ ℝⁿ, and replace quadratic terms by inner products of these.
- E.g. the MAX CUT vector program:

$$\max \frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} (1 - v_i^T v_j)$$

s.t. $v_i^T v_i = 1, \qquad i \in N$
 $v_i \in \mathbb{R}^n, \qquad i \in N.$

- Feasible solutions correspond to families of points on the n-dimensional unit sphere S_{n-1}.
- Original program given by restriction to 1-dimensional solutions, e.g. all points along the *x*-axis: v_i = (y_i, 0, ..., 0).
- We shall see that vector programs can in fact be solved in polynomial time, and projections to 1 dimension yield nice approximations for the original problem.

2. Semidefinite Programming

- A vector program on *n n*-dimensional vectors {*v*₁,...,*v_n*} can also be viewed as a linear program on the *n* × *n* matrix *Y* of their inner products, *Y* = [*v_i^T v_j*]_{*ij*}.
- However there is a "structural" constraint on the respective matrix linear program: the feasible solutions must be specifically *inner product* matrices.
- This turns out to imply (cf. later) that the feasible solution matrices Y are symmetric and positive semidefinite, i.e.

$$x^T Y x \ge 0$$
, for all $x \in \mathbb{R}^n$.

◆ロト ◆課 ト ◆注 ト ◆注 ト ○注 ○ のへの

Thus vector programming problems can be reformulated as semidefinite programming problems. ► Define the Frobenius (inner) product of two $n \times n$ matrices $A, B \in \mathbb{R}^{n \times n}$ as

$$A \bullet B = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij} = \operatorname{tr}(A^{T}B).$$

- Denote the family of symmetric *n* × *n* real matrices by *M_n*, and the condition that Y ∈ *M_n* be positive semidefinite by Y ≥ 0.
- Let C, D₁,..., D_k ∈ M_n and d₁,..., d_k ∈ R. Then the general semidefinite programming problem is

$$\max / \min C \bullet Y$$

s.t. $D_i \bullet Y = d_i, \qquad i = 1, \dots, k$
 $Y \succeq 0,$
 $Y \in M_n.$

E.g. the MAX CUT semidefinite program relaxation:

$$\max \frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} (1 - y_{ij})$$

s.t. $y_{ii} = 1, \qquad i \in N$
 $Y \succeq 0,$
 $Y \in M_n.$

Or, equivalently:

min
$$W \bullet Y$$

s.t. $D_i \bullet Y = 1,$ $i \in N$
 $Y \succeq 0,$
 $Y \in M_n.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $Y = [y_{ij}]_{ij}$, $W = [w_{ij}]_{ij}$, $D_i = [1]_{ii}$.

Properties of positive semidefinite matrices

Let *A* be a real, symmetric $n \times n$ matrix. Then *A* has *n* (not necessarily distinct) real eigenvalues, and associated *n* linearly independent eigenvectors.

Theorem 1. Let $A \in M_n$. Then the following are equivalent:

- 1. $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.
- 2. All eigenvalues of A are nonnegative.
- 3. $A = W^T W$ for some $W \in \mathbb{R}^{n \times n}$.

Proof (1 \Rightarrow 2).

- Let λ be an eigenvalue of *A*, and *v* a corresponding eigenvector.
- Then $Av = \lambda v$ and $v^T Av = \lambda v^T v$.
- ► By assumption (1), $v^T A v \ge 0$, and since $v^T v > 0$, necessarily $\lambda \ge 0$.

= 900

∃ > _

• □ ▶ • □ ▶ • □ ▶

Proof ($2 \Rightarrow 3$).

- ► Decompose *A* as $A = Q\Lambda Q^T$, where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$, with $\lambda_1, \dots, \lambda_n \ge 0$ the *n* eigenvalues of *A*.
- Since by assumption (2), λ_i ≥ 0 for each *i*, we can further decompose Λ = DD^T, where D = diag(√λ₁,...,√λ_n).
- ► Denote $W = (QD)^T$. Then $A = Q\Lambda Q^T = QDD^T Q = W^T W$.

Proof (3 \Rightarrow 1).

- By assumption (3), A can be decomposed as $A = W^T W$.
- Then for any $x \in \mathbb{R}^n$:

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{x} = (\mathbf{W} \mathbf{x})^{\mathsf{T}} (\mathbf{W} \mathbf{x}) \ge \mathbf{0}. \qquad \Box$$

From vector programs to semidefinite programs

Given a vector program \mathcal{V} , define a corresponding semidefinite program \mathcal{S} on the inner product matrix of the vector variables, as described earlier.

Corollary 2. Vector program \mathcal{V} and semidefinite program \mathcal{S} are equivalent (have essentially the same feasible solutions).

Proof. Let v_1, \ldots, v_n be a feasible solution to \mathcal{V} . Let W be a matrix with columns v_1, \ldots, v_n . Then $Y = W^T W$ is a feasible solution to \mathcal{S} with the same objective function value as v_1, \ldots, v_n .

Conversely, let *Y* be a feasible solution to *S*. By Theorem 1 (iii), *Y* can be decomposed as $Y = W^T W$. Let v_1, \ldots, v_n be the columns of *W*. Then v_1, \ldots, v_n is a feasible solution to \mathcal{V} with the same objective function value as *Y*.

・ロット (雪) (日) (日)

Notes on computation

- Using Cholesky decomposition, a matrix A ∈ M_n can be decomposed in polynomial time as A = UΛU^T, where Λ is a diagonal matrix whose entries are the eigenvalues of A.
- By Theorem 1 (ii), this gives a polynomial time test for positive semidefiniteness.
- The decomposition of Theorem (iii), A = WW^T, is not in general polynomial time computable, because W may contain irrational entries. It may however be approximated efficiently to arbitrary precision. In the following this slight inaccuracy is ignored.
- Note also that any convex combination of positive semidefinite matrices is again positive semidefinite.

・ロット (雪) (日) (日)

- Semidefinite programs can be solved (to arbitrary accuracy) by the ellipsoid algorithm.
- To validate this, it suffices to show the existence of a polynomial time separation oracle.

Theorem 3. Let S be a semidefinite program and $A \in \mathbb{R}^n$. One can determine in polynomial time whether A is feasible for S and, if not, find a separating hyperplane.

/∰ ► < ∃ ►

<∃> ∃

Proof. A is feasible for S if it is symmetric, positive semidefinite, and satisfies all of the linear constraints. Each of these conditions can be tested in polynomial time. In the case of infeasible *A*, a separating hyperplane can be determined as follows:

- If A is not symmetric, then a_{ij} > a_{ji} for some i,j. Then y_{ij} ≤ y_{ji} is a separating hyperplane.
- If A is not positive semidefinite, then it has a negative eigenvalue, say λ. Let v be a corresponding eigenvector. Then
 (vv^T) Y = v^T Yv ≥ 0 is a separating hyperplane.

(日) (雪) (ヨ) (ヨ) (ヨ)

If any of the linear constraints is violated, it directly yields a separating hyperplane.

3. Randomised Rounding of Vector Programs

- Recall the outline of the present approximation scheme:
 - 1. Formulate the problem of interest as a strict quadratic program \mathcal{P} .
 - 2. Relax \mathcal{P} into a vector program \mathcal{V} .
 - 3. Reformulate \mathcal{V} as a semidefinite program \mathcal{S} and solve (approximately) using the ellipsoid method.
 - 4. Round the solution of \mathcal{V} back into \mathcal{P} by projecting it on some 1-dimensional subspace.

- E - b

We shall now address the fourth task, using the MAX CUT program as an example.

Randomised rounding for MAX CUT

- ▶ Let $v_1, ..., v_n \in S_{n-1}$ be an optimal solution to the MAX CUT vector program, and let OPT_v be its objective function value. We want to obtain a cut (S, \overline{S}) whose weight is a large fraction of OPT_v .
- ▶ The contribution of a pair of vectors v_i , v_j (i < j) to OPT_v is

$$\frac{w_{ij}}{2}(1-\cos\theta_{ij}),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where θ_{ij} denotes the (unsigned) angle between v_i and v_j .

We would like vertices *i*, *j* to be separated by the cut if cos θ_{ij} is large (close to π).

Here is an idea: pick a vector *r* on the unit sphere S_{n-1} uniformly at random, and define the cut by:

$$S = \{i \mid v_i^T r \ge 0\}, \quad \bar{S} = \{i \mid v_i^T r < 0\}.$$

Theorem 4. For any pair of vertices *i*, *j*:

$$\Pr[i \text{ and } j \text{ are separated by the cut}] = \frac{\theta_{ij}}{\pi}.$$

Proof. Let r' be the projection of r onto the plane containing vectors v_i and v_j . Vertices i and j are separated iff v_i and v_j have "different orientation" w.r.t. r', i.e. are on opposite sides of the normal line determined by r', i.e. the normal line falls in the angle of width θ_{ij} between v_i and v_j . Since r has been picked from a spherically symmetric distribution, r' will determine a random direction in the plane. The lemma follows.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A technical issue: how to generate *n*-dimensional unit vectors u.a.r.? **Lemma 5.** Let x_1, \ldots, x_n be independent N(0, 1) distributed random variables, and let $d = (x_1^2 + \cdots + x_n^2)^{1/2}$. Then the random vector $r = (x_1/d, \ldots, x_n/d)$ has uniform distribution on S_{n-1} .

Proof. Random vector $\mathbf{x} = (x_1, \dots, x_n)$ has density

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\mathbf{x}_i^2/2} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}\sum_i \mathbf{x}_i^2}.$$

Since the density depends only on the distance from the origin, the distribution of *x* is spherically symmetric. Hence, dividing by the length of *x*, i.e. *d*, yields a uniformly distributed random vector on S_{n-1} .

- Now let us consider how close to OPT_v the weight of our random cut is likely to be.
- ▶ Let *W* be a random variable denoting the weight of the cut, i.e.

$$W = \sum_{1 \le i < j \le n} w_{ij} I[i \text{ and } j \text{ are separated by the cut}]$$

Also, denote

$$\alpha = \frac{2}{\pi} \min_{0 \le \theta \le \pi} \frac{\theta}{1 - \cos \theta}.$$

日本・日本・日本・

-

By elementary calculus, $\alpha > 0.87856$.

Theorem 6. $E[W] \ge \alpha \cdot OPT_v$.

Proof. By the definition of α ,

$$\frac{\theta}{\pi} \geq \alpha \left(\frac{1 - \cos \theta}{2} \right),$$

for any θ , $0 \le \theta \le \pi$.

Thus, by Lemma 4:

 $E[W] = \sum_{1 \le i < j \le n} w_{ij} \Pr[i \text{ and } j \text{ are separated by the cut}]$ $= \sum_{1 \le i < j \le n} w_{ij} \frac{\theta_{ij}}{\pi}$ $\ge \alpha \cdot \sum_{1 \le i < j \le n} w_{ij} \frac{1}{2} (1 - \cos \theta_{ij})$ $= \alpha \cdot \operatorname{OPT}_{v}. \quad \Box$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By using repeated trials, this result can be strengthened:

Theorem 7. There is a randomised approximation algorithm for MAX CUT that with "arbitrarily high probability" achieves approximation factor > 0.87856.

伺き イヨト イヨト