
Semidefinite Programming

Semidefinite Programming

Pekka Orponen

T-79.7001 Postgraduate Course on Theoretical Computer Science

24.4.2008

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Outline

◮ 1. Strict Quadratic Programs and Vector Programs
◮ Strict quadratic programs
◮ The vector program relaxation

◮ 2. Semidefinite Programs
◮ Vector programs as matrix linear programs
◮ Properties of semidefinite matrices
◮ From vector programs to semidefinite programs
◮ Notes on computation

◮ 3. Randomised Rounding of Vector Programs
◮ Randomised rounding for MAX CUT

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

1. Strict Quadratic Programs and Vector
Programs

◮ A quadratic program concerns optimising a quadratic function of
integer variables, with quadratic constraints.

◮ A quadratic program is strict if it contains no linear terms, i.e.
each monomial appearing in it is either constant or of degree 2.

◮ E.g. a strict quadratic program for weighted MAX CUT:
◮ Given a weighted graph G = (N,E ,w), N = [n] = {1, . . . ,n}.
◮ Associate to each vertex i ∈ N a variable yi ∈ {+1,−1}. A cut

(S, S̄) is determined as S = {i | yi = +1}, S̄ = {i | yi = −1}.
◮ The program:

max
1

2 ∑
1≤i<j≤n

wij(1− yiyj)

s.t. y2
i = 1, i ∈ N

yi ∈ Z, i ∈ N.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

The vector program relaxation
◮ Given a strict quadratic program on n variables yi , relax the

variables into n-dimensional vectors vi ∈ R
n, and replace

quadratic terms by inner products of these.
◮ E.g. the MAX CUT vector program:

max
1

2 ∑
1≤i<j≤n

wij(1− vT
i vj)

s.t. vT
i vi = 1, i ∈ N

vi ∈ R
n, i ∈ N.

◮ Feasible solutions correspond to families of points on the
n-dimensional unit sphere Sn−1.

◮ Original program given by restriction to 1-dimensional solutions,
e.g. all points along the x-axis: vi = (yi ,0, . . . ,0).

◮ We shall see that vector programs can in fact be solved in
polynomial time, and projections to 1 dimension yield nice
approximations for the original problem.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

2. Semidefinite Programming

◮ A vector program on n n-dimensional vectors {v1, . . . ,vn} can
also be viewed as a linear program on the n×n matrix Y of their
inner products, Y = [vT

i vj]ij .

◮ However there is a “structural” constraint on the respective matrix
linear program: the feasible solutions must be specifically inner
product matrices.

◮ This turns out to imply (cf. later) that the feasible solution matrices
Y are symmetric and positive semidefinite, i.e.

xT Yx ≥ 0, for all x ∈ R
n.

◮ Thus vector programming problems can be reformulated as
semidefinite programming problems.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

◮ Define the Frobenius (inner) product of two n×n matrices
A,B ∈ R

n×n as

A•B =
n

∑
i=1

n

∑
j=1

aijbij = tr(AT B).

◮ Denote the family of symmetric n×n real matrices by Mn, and
the condition that Y ∈ Mn be positive semidefinite by Y � 0.

◮ Let C,D1, . . . ,Dk ∈ Mn and d1, . . . ,dk ∈ R. Then the general
semidefinite programming problem is

max/min C •Y

s.t. Di •Y = di , i = 1, . . . ,k

Y � 0,

Y ∈ Mn.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

◮ E.g. the MAX CUT semidefinite program relaxation:

max
1

2 ∑
1≤i<j≤n

wij(1− yij)

s.t. yii = 1, i ∈ N

Y � 0,

Y ∈ Mn.

◮ Or, equivalently:

min W •Y

s.t. Di •Y = 1, i ∈ N

Y � 0,

Y ∈ Mn.

where Y = [yij]ij , W = [wij]ij , Di = [1]ii .

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Properties of positive semidefinite matrices

Let A be a real, symmetric n×n matrix. Then A has n (not necessarily
distinct) real eigenvalues, and associated n linearly independent
eigenvectors.

Theorem 1. Let A ∈ Mn. Then the following are equivalent:

1. xT Ax ≥ 0 for all x ∈ R
n.

2. All eigenvalues of A are nonnegative.

3. A = W T W for some W ∈ R
n×n.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Proof (1 ⇒ 2).

◮ Let λ be an eigenvalue of A, and v a corresponding eigenvector.

◮ Then Av = λv and vT Av = λvT v .

◮ By assumption (1), vT Av ≥ 0, and since vT v > 0, necessarily
λ ≥ 0.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Proof (2 ⇒ 3).

◮ Decompose A as A = QΛQT , where Λ = diag(λ1, . . . ,λn), with
λ1, . . . ,λn ≥ 0 the n eigenvalues of A.

◮ Since by assumption (2), λi ≥ 0 for each i , we can further
decompose Λ = DDT , where D = diag(

√
λ1, . . . ,

√
λn).

◮ Denote W = (QD)T . Then A = QΛQT = QDDT Q = W T W .

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Proof (3 ⇒ 1).

◮ By assumption (3), A can be decomposed as A = W T W .

◮ Then for any x ∈ R
n:

xT Ax = xT W T Wx = (Wx)T (Wx) ≥ 0.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

From vector programs to semidefinite programs

Given a vector program V , define a corresponding semidefinite
program S on the inner product matrix of the vector variables, as
described earlier.

Corollary 2. Vector program V and semidefinite program S are
equivalent (have essentially the same feasible solutions).

Proof. Let v1, . . . ,vn be a feasible solution to V . Let W be a matrix
with columns v1, . . . ,vn. Then Y = W T W is a feasible solution to S

with the same objective function value as v1, . . . ,vn.

Conversely, let Y be a feasible solution to S . By Theorem 1 (iii), Y can
be decomposed as Y = W T W . Let v1, . . . ,vn be the columns of W .
Then v1, . . . ,vn is a feasible solution to V with the same objective
function value as Y .

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Notes on computation

◮ Using Cholesky decomposition, a matrix A ∈ Mn can be
decomposed in polynomial time as A = UΛUT , where Λ is a
diagonal matrix whose entries are the eigenvalues of A.

◮ By Theorem 1 (ii), this gives a polynomial time test for positive
semidefiniteness.

◮ The decomposition of Theorem (iii), A = WW T , is not in general
polynomial time computable, because W may contain irrational
entries. It may however be approximated efficiently to arbitrary
precision. In the following this slight inaccuracy is ignored.

◮ Note also that any convex combination of positive semidefinite
matrices is again positive semidefinite.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

◮ Semidefinite programs can be solved (to arbitrary accuracy) by
the ellipsoid algorithm.

◮ To validate this, it suffices to show the existence of a polynomial
time separation oracle.

Theorem 3. Let S be a semidefinite program and A ∈ R
n. One can

determine in polynomial time whether A is feasible for S and, if not,
find a separating hyperplane.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Proof. A is feasible for S if it is symmetric, positive semidefinite, and
satisfies all of the linear constraints. Each of these conditions can be
tested in polynomial time. In the case of infeasible A, a separating
hyperplane can be determined as follows:

◮ If A is not symmetric, then aij > aji for some i, j . Then yij ≤ yji is a
separating hyperplane.

◮ If A is not positive semidefinite, then it has a negative eigenvalue,
say λ. Let v be a corresponding eigenvector. Then
(vvT)•Y = vT Yv ≥ 0 is a separating hyperplane.

◮ If any of the linear constraints is violated, it directly yields a
separating hyperplane.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

3. Randomised Rounding of Vector Programs

◮ Recall the outline of the present approximation scheme:

1. Formulate the problem of interest as a strict quadratic program P .
2. Relax P into a vector program V .
3. Reformulate V as a semidefinite program S and solve

(approximately) using the ellipsoid method.
4. Round the solution of V back into P by projecting it on some

1-dimensional subspace.

◮ We shall now address the fourth task, using the MAX CUT
program as an example.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Randomised rounding for MAX CUT

◮ Let v1, . . . ,vn ∈ Sn−1 be an optimal solution to the MAX CUT
vector program, and let OPTv be its objective function value. We
want to obtain a cut (S, S̄) whose weight is a large fraction of
OPTv .

◮ The contribution of a pair of vectors vi , vj (i < j) to OPTv is

wij

2
(1− cosθij),

where θij denotes the (unsigned) angle between vi and vj .

◮ We would like vertices i, j to be separated by the cut if cosθij is
large (close to π).

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Here is an idea: pick a vector r on the unit sphere Sn−1 uniformly at
random, and define the cut by:

S = {i | vT
i r ≥ 0}, S̄ = {i | vT

i r < 0}.

Theorem 4. For any pair of vertices i, j :

Pr[i andj are separated by the cut] =
θij

π
.

Proof. Let r ′ be the projection of r onto the plane containing vectors vi

and vj . Vertices i and j are separated iff vi and vj have “different
orientation” w.r.t. r ′, i.e. are on opposite sides of the normal line
determined by r ′, i.e. the normal line falls in the angle of width θij

between vi and vj . Since r has been picked from a spherically
symmetric distribution, r ′ will determine a random direction in the
plane. The lemma follows.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

A technical issue: how to generate n-dimensional unit vectors u.a.r.?

Lemma 5. Let x1, . . . ,xn be independent N(0,1) distributed random
variables, and let d = (x2

1 + · · ·+ x2
n)1/2. Then the random vector

r = (x1/d, . . . ,xn/d) has uniform distribution on Sn−1.

Proof. Random vector x = (x1, . . . ,xn) has density

f (x1, . . . ,xn) =
n

∏
i=1

1√
2π

e−x2
i /2 =

1

(2π)n/2
e−

1
2 ∑i x2

i .

Since the density depends only on the distance from the origin, the
distribution of x is spherically symmetric. Hence, dividing by the length
of x , i.e. d , yields a uniformly distributed random vector on Sn−1.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

◮ Now let us consider how close to OPTv the weight of our random
cut is likely to be.

◮ Let W be a random variable denoting the weight of the cut, i.e.

W = ∑
1≤i<j≤n

wij I[i andj are separated by the cut]

◮ Also, denote

α =
2

π
min

0≤θ≤π

θ
1− cosθ

.

By elementary calculus, α > 0.87856.

Theorem 6. E [W] ≥ α ·OPTv .

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

Proof. By the definition of α,

θ
π
≥ α

(

1− cosθ
2

)

,

for any θ, 0 ≤ θ ≤ π.

Thus, by Lemma 4:

E [W] = ∑
1≤i<j≤n

wij Pr[i andj are separated by the cut]

= ∑
1≤i<j≤n

wij
θij

π

≥ α · ∑
1≤i<j≤n

wij
1

2
(1− cosθij)

= α ·OPTv .

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

Semidefinite Programming

By using repeated trials, this result can be strengthened:

Theorem 7. There is a randomised approximation algorithm for MAX
CUT that with “arbitrarily high probability” achieves approximation
factor > 0.87856.

T–79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008

