Semidefinite Programming

Pekka Orponen

T-79.7001 Postgraduate Course on Theoretical Computer Science
24.4.2008

Outline

- 1. Strict Quadratic Programs and Vector Programs
- Strict quadratic programs
- The vector program relaxation
- 2. Semidefinite Programs
- Vector programs as matrix linear programs
- Properties of semidefinite matrices
- From vector programs to semidefinite programs
- Notes on computation
- 3. Randomised Rounding of Vector Programs
- Randomised rounding for MAX CUT

1. Strict Quadratic Programs and Vector Programs

- A quadratic program concerns optimising a quadratic function of integer variables, with quadratic constraints.
- A quadratic program is strict if it contains no linear terms, i.e. each monomial appearing in it is either constant or of degree 2.
- E.g. a strict quadratic program for weighted MAX CUT:
- Given a weighted graph $G=(N, E, w), N=[n]=\{1, \ldots, n\}$.
- Associate to each vertex $i \in N$ a variable $y_{i} \in\{+1,-1\}$. A cut (S, \bar{S}) is determined as $S=\left\{i \mid y_{i}=+1\right\}, \bar{S}=\left\{i \mid y_{i}=-1\right\}$.
- The program:

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-y_{i} y_{j}\right) & \\
\text { s.t. } & y_{i}^{2}=1, & i \in N \\
& y_{i} \in \mathbb{Z}, & i \in N .
\end{array}
$$

The vector program relaxation

- Given a strict quadratic program on n variables y_{i}, relax the variables into n-dimensional vectors $v_{i} \in \mathbb{R}^{n}$, and replace quadratic terms by inner products of these.
- E.g. the MAX CUT vector program:

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-v_{i}^{\top} v_{j}\right) & \\
\text { s.t. } & v_{i}^{\top} v_{i}=1, & i \in N \\
& v_{i} \in \mathbb{R}^{n}, & i \in N .
\end{array}
$$

- Feasible solutions correspond to families of points on the n-dimensional unit sphere S_{n-1}.
- Original program given by restriction to 1-dimensional solutions, e.g. all points along the x-axis: $v_{i}=\left(y_{i}, 0, \ldots, 0\right)$.
- We shall see that vector programs can in fact be solved in polynomial time, and projections to 1 dimension yield nice approximations for the original problem.

2. Semidefinite Programming

- A vector program on $n n$-dimensional vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ can also be viewed as a linear program on the $n \times n$ matrix Y of their inner products, $Y=\left[v_{i}^{\top} v_{j}\right]_{j}$.
- However there is a "structural" constraint on the respective matrix linear program: the feasible solutions must be specifically inner product matrices.
- This turns out to imply (cf. later) that the feasible solution matrices Y are symmetric and positive semidefinite, i.e.

$$
x^{T} Y x \geq 0, \quad \text { for all } x \in \mathbb{R}^{n}
$$

- Thus vector programming problems can be reformulated as semidefinite programming problems.
- Define the Frobenius (inner) product of two $n \times n$ matrices $A, B \in \mathbb{R}^{n \times n}$ as

$$
A \bullet B=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}=\operatorname{tr}\left(A^{T} B\right) .
$$

- Denote the family of symmetric $n \times n$ real matrices by M_{n}, and the condition that $Y \in M_{n}$ be positive semidefinite by $Y \succeq 0$.
- Let $C, D_{1}, \ldots, D_{k} \in M_{n}$ and $d_{1}, \ldots, d_{k} \in R$. Then the general semidefinite programming problem is

$$
\begin{aligned}
\max / \min & C \bullet Y \\
\text { s.t. } & D_{i} \bullet Y=d_{i}, \quad i=1, \ldots, k \\
Y & \succeq 0, \\
Y & \in M_{n} .
\end{aligned}
$$

- E.g. the MAX CUT semidefinite program relaxation:

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-y_{i j}\right) \\
\text { s.t. } & y_{i i}=1, & i \in N \\
& Y \succeq 0, & \\
& Y \in M_{n} . &
\end{array}
$$

- Or, equivalently:

$$
\begin{array}{ll}
\min & W \bullet Y \\
\text { s.t. } & D_{i} \bullet Y=1, \quad i \in N \\
& Y \succeq 0, \\
& Y \in M_{n} .
\end{array}
$$

where $Y=\left[y_{i j}\right]_{i j}, W=\left[w_{i j}\right]_{i j}, D_{i}=[1]_{i i}$.

Properties of positive semidefinite matrices

Let A be a real, symmetric $n \times n$ matrix. Then A has n (not necessarily distinct) real eigenvalues, and associated n linearly independent eigenvectors.

Theorem 1. Let $A \in M_{n}$. Then the following are equivalent:

1. $x^{\top} A x \geq 0$ for all $x \in \mathbb{R}^{n}$.
2. All eigenvalues of A are nonnegative.
3. $A=W^{T} W$ for some $W \in \mathbb{R}^{n \times n}$.

Proof ($1 \Rightarrow 2$).

- Let λ be an eigenvalue of A, and v a corresponding eigenvector.
- Then $A v=\lambda v$ and $v^{\top} A v=\lambda v^{\top} v$.
- By assumption (1), $v^{\top} A v \geq 0$, and since $v^{\top} v>0$, necessarily $\lambda \geq 0$.

Proof $(2 \Rightarrow 3)$.

- Decompose A as $A=Q \Lambda Q^{T}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ the n eigenvalues of A.
- Since by assumption (2), $\lambda_{i} \geq 0$ for each i, we can further decompose $\Lambda=D D^{T}$, where $D=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right)$.
- Denote $W=(Q D)^{T}$. Then $A=Q \Lambda Q^{T}=Q D D^{T} Q=W^{T} W$.

Proof $(3 \Rightarrow 1)$.

- By assumption (3), A can be decomposed as $A=W^{\top} W$.
- Then for any $x \in \mathbb{R}^{n}$:

$$
x^{\top} A x=x^{\top} W^{\top} W x=(W x)^{T}(W x) \geq 0
$$

From vector programs to semidefinite programs

Given a vector program \mathcal{V}, define a corresponding semidefinite program \mathcal{S} on the inner product matrix of the vector variables, as described earlier.

Corollary 2. Vector program \mathcal{V} and semidefinite program \mathcal{S} are equivalent (have essentially the same feasible solutions).

Proof. Let v_{1}, \ldots, v_{n} be a feasible solution to \mathcal{V}. Let W be a matrix with columns v_{1}, \ldots, v_{n}. Then $Y=W^{\top} W$ is a feasible solution to S with the same objective function value as v_{1}, \ldots, v_{n}.
Conversely, let Y be a feasible solution to S. By Theorem 1 (iii), Y can be decomposed as $Y=W^{\top} W$. Let v_{1}, \ldots, v_{n} be the columns of W. Then v_{1}, \ldots, v_{n} is a feasible solution to \mathcal{V} with the same objective function value as Y.

Notes on computation

- Using Cholesky decomposition, a matrix $A \in M_{n}$ can be decomposed in polynomial time as $A=U \Lambda U^{\top}$, where Λ is a diagonal matrix whose entries are the eigenvalues of A.
- By Theorem 1 (ii), this gives a polynomial time test for positive semidefiniteness.
- The decomposition of Theorem (iii), $A=W W^{\top}$, is not in general polynomial time computable, because W may contain irrational entries. It may however be approximated efficiently to arbitrary precision. In the following this slight inaccuracy is ignored.
- Note also that any convex combination of positive semidefinite matrices is again positive semidefinite.
- Semidefinite programs can be solved (to arbitrary accuracy) by the ellipsoid algorithm.
- To validate this, it suffices to show the existence of a polynomial time separation oracle.

Theorem 3. Let \mathcal{S} be a semidefinite program and $A \in \mathbb{R}^{n}$. One can determine in polynomial time whether A is feasible for S and, if not, find a separating hyperplane.

Proof. A is feasible for S if it is symmetric, positive semidefinite, and satisfies all of the linear constraints. Each of these conditions can be tested in polynomial time. In the case of infeasible A, a separating hyperplane can be determined as follows:

- If A is not symmetric, then $a_{i j}>a_{j i}$ for some i, j. Then $y_{i j} \leq y_{j i}$ is a separating hyperplane.
- If A is not positive semidefinite, then it has a negative eigenvalue, say λ. Let v be a corresponding eigenvector. Then $\left(v v^{T}\right) \bullet Y=v^{T} Y v \geq 0$ is a separating hyperplane.
- If any of the linear constraints is violated, it directly yields a separating hyperplane.

3. Randomised Rounding of Vector Programs

- Recall the outline of the present approximation scheme:

1. Formulate the problem of interest as a strict quadratic program \mathcal{P}.
2. Relax \mathscr{P} into a vector program \mathcal{V}.
3. Reformulate \mathcal{V} as a semidefinite program \mathcal{S} and solve (approximately) using the ellipsoid method.
4. Round the solution of \mathcal{V} back into \mathscr{P} by projecting it on some 1-dimensional subspace.

- We shall now address the fourth task, using the MAX CUT program as an example.

Randomised rounding for MAX CUT

- Let $v_{1}, \ldots, v_{n} \in S_{n-1}$ be an optimal solution to the MAX CUT vector program, and let OPT_{v} be its objective function value. We want to obtain a cut (S, \bar{S}) whose weight is a large fraction of OPT_{v}.
- The contribution of a pair of vectors $v_{i}, v_{j}(i<j)$ to $O P T_{v}$ is

$$
\frac{w_{i j}}{2}\left(1-\cos \theta_{i j}\right)
$$

where $\theta_{i j}$ denotes the (unsigned) angle between v_{i} and v_{j}.

- We would like vertices i, j to be separated by the cut if $\cos \theta_{i j}$ is large (close to π).

Here is an idea: pick a vector r on the unit sphere S_{n-1} uniformly at random, and define the cut by:

$$
S=\left\{i \mid v_{i}^{\top} r \geq 0\right\}, \quad \bar{S}=\left\{i \mid v_{i}^{\top} r<0\right\} .
$$

Theorem 4. For any pair of vertices i, j :

$$
\operatorname{Pr}[i \text { and } j \text { are separated by the cut }]=\frac{\theta_{i j}}{\pi} .
$$

Proof. Let r^{\prime} be the projection of r onto the plane containing vectors v_{i} and v_{j}. Vertices i and j are separated iff v_{i} and v_{j} have "different orientation" w.r.t. r^{\prime}, i.e. are on opposite sides of the normal line determined by r^{\prime}, i.e. the normal line falls in the angle of width $\theta_{i j}$ between v_{i} and v_{j}. Since r has been picked from a spherically symmetric distribution, r^{\prime} will determine a random direction in the plane. The lemma follows.

A technical issue: how to generate n-dimensional unit vectors u.a.r.? Lemma 5. Let x_{1}, \ldots, x_{n} be independent $N(0,1)$ distributed random variables, and let $d=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Then the random vector $r=\left(x_{1} / d, \ldots, x_{n} / d\right)$ has uniform distribution on S_{n-1}.
Proof. Random vector $x=\left(x_{1}, \ldots, x_{n}\right)$ has density

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{i}^{2} / 2}=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{1}{2} \sum_{i} x_{i}^{2}} .
$$

Since the density depends only on the distance from the origin, the distribution of x is spherically symmetric. Hence, dividing by the length of x, i.e. d, yields a uniformly distributed random vector on S_{n-1}.

- Now let us consider how close to OPT_{v} the weight of our random cut is likely to be.
- Let W be a random variable denoting the weight of the cut, i.e.

$$
W=\sum_{1 \leq i<j \leq n} w_{i j} I[i \text { and } j \text { are separated by the cut }]
$$

- Also, denote

$$
\alpha=\frac{2}{\pi} \min _{0 \leq \theta \leq \pi} \frac{\theta}{1-\cos \theta} .
$$

By elementary calculus, $\alpha>0.87856$.
Theorem 6. $E[W] \geq \alpha \cdot \mathrm{OPT}_{v}$.

Proof. By the definition of α,

$$
\frac{\theta}{\pi} \geq \alpha\left(\frac{1-\cos \theta}{2}\right)
$$

for any $\theta, 0 \leq \theta \leq \pi$.
Thus, by Lemma 4:

$$
\begin{aligned}
E[W] & =\sum_{1 \leq i<j \leq n} w_{i j} \operatorname{Pr}[i \text { and } j \text { are separated by the cut }] \\
& =\sum_{1 \leq i<j \leq n} w_{i j} \frac{\theta_{i j}}{\pi} \\
& \geq \alpha \cdot \sum_{1 \leq i<j \leq n} w_{i j} \frac{1}{2}\left(1-\cos \theta_{i j}\right) \\
& =\alpha \cdot \mathrm{OPT}_{v} .
\end{aligned}
$$

By using repeated trials, this result can be strengthened:

Theorem 7. There is a randomised approximation algorithm for MAX CUT that with "arbitrarily high probability" achieves approximation factor >0.87856.

