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The Steiner Network Problem

1. The Steiner Network Problem

◮ Also known as the Survivable Network Design Problem
◮ Given:

◮ Undirected graph G = (V ,E) with nonnegative edge costs
c : E → Q+

◮ Terminal connectivity requirement r :
(V

2

)

→ Z+

◮ Goal:
◮ Find minimum-cost subgraph of G that contains at least r(u,v)

edge-disjoint paths between each pair of terminals {u,v}.

◮ Extension:
◮ Each edge e ∈ E can have multiplicity ue ∈ Z+ ∪{∞}
◮ General goal is to find a minimum-cost multigraph on V that

satisfies the connectivity requirement. Each copy of edge e
induces cost c(e).

T–79.7001 Prostgraduate Course on Theoretical Computer Science 7.4.2008



The Steiner Network Problem

Linear programming formulation

◮ Each S ⊆ V has associated cut requirement:

f (S) = max{r(u,v) | u ∈ S,v ∈ S̄}

◮ Recall notation for boundary of cut S:

δ(S) = {{u,v} ∈ E | u ∈ S,v ∈ S}

◮ Steiner network LP:

min ∑
e∈E

cexe

s.t. ∑
e:e∈δ(S)

xe ≥ f (S), S ⊆ V

xe ∈ {0,1, . . . ,ue}, e ∈ E ,ue 6= ∞
xe ∈ Z+, e ∈ E ,ue = ∞
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The Steiner Network Problem

LP relaxation

◮ Relaxed program:

min ∑
e∈E

cexe

s.t. ∑
e:e∈δ(S)

xe ≥ f (S), S ⊆ V

ue ≥ xe ≥ 0, e ∈ E ,ue 6= ∞
xe ≥ 0, e ∈ E ,ue = ∞

◮ Note that program has exponentially many constraints, so cannot
be solved in polynomial time in any obvious way.

◮ However, also a polynomial-sized LP can be developed.

◮ Alternately, a method such as the ellipsoid algorithm based on
the notion of a polynomial-time separation oracle can be used.
This is a subroutine that, given point x , either validates that x is a
feasible solution or produces a violated constraint.
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The Steiner Network Problem

2. The Half-Integrality Property

◮ Our aim is to develop a 2-approximation algorithm for the Steiner
Network Problem.

◮ This is easy for problems that have the half-integrality property: in
any extremal feasible solution to the fractional LP, each variable
xe has value of the form m · (1/2), m ≥ 0. (Thus in the case of
binary variables, xe ∈ {0,1/2,1}.)

◮ Extremal solution ≡ not a convex combination of others.

◮ If the half-integrality property holds, one simply rounds up all the
xe in the fractional optimum. This at most doubles the total cost.
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The Steiner Network Problem

Half-integrality of Vertex Cover

◮ Consider e.g. the Vertex Cover Problem on a graph G = (V ,E),
with vertex weights cv ∈ Q+.

◮ Fractional LP formulation:

min ∑
v∈V

cv xv

s.t. xu + xv ≥ 1, {u,v} ∈ E

xv ≥ 0, v ∈ V
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The Steiner Network Problem

Lemma 1. Let x be a feasible solution to the fractional Vertex Cover
LP that is not half-integral. Then x is a convex combination of two
(other) feasible solutions to the LP.

Proof. Partition the set of vertices that are not half-integral in x :

V+ =

{

v

∣

∣

∣

∣

1

2
< xv < 1

}

, V− =

{

v

∣

∣

∣

∣

0 < xv <
1

2

}

.

Then for any ε > 0, x = 1
2 (y + z) for solutions y , z defined as follows:

yv =







xv + ε, xv ∈ V+

xv − ε, xv ∈ V−

xv , otherwise
zv =







xv − ε, xv ∈ V+

xv + ε, xv ∈ V−

xv , otherwise

It can be verified that for small enough ε > 0, solutions y ,z 6= x are feasible

for the fractional Vertex Cover LP. (The only nontrivial condition occurs when

xu + xv = 1. But then the definition of V+, V− ensures that also

yu + yv = zu + zv = 1 for any ε > 0.)
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The Steiner Network Problem

Half-integrality of Steiner Networks
◮ Unfortunately, the Steiner Network Problem does not have the

half-integrality property.
◮ Counterexample: the Petersen graph with connectivity

requirement 1 between each pair of vertices.

◮ This has fractional optimal cost 5, achieved e.g. by solution with
extent 1/3 of each edge. Any half-integral solution of cost 5 would
have to pick two edges with extent 1/2 incident to each vertex,
resulting in a Hamiltonian cycle of the graph. But the Petersen
graph is nonhamiltonian.
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The Steiner Network Problem

An extremal solution on the Petersen graph

◮ Consider the following extremal optimum on the Petersen graph:

Solid edges are picked to extent 1/2 and dotted edges to extent
1/4, for a total cost of 5.

◮ Note that although the solution is not half-integral, some edges
are included to extent 1/2.

◮ This is in fact a general property of all extremal solutions to the
Steiner Network Problem, and can be used to derive an iterated
rounding algorithm for it, with approximation ratio 2.
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The Steiner Network Problem

3. Approximation by Iterated Rounding

◮ A requirement function f defined on the cuts of a graph
G = (V ,E) is weakly supermodular if f (V ) = 0 and for any two
cuts A,B ⊆ V at least one of the following holds:

1. f (A∩B)+ f (A∪B)≥ f (A)+ f (B)
2. f (A\B)+ f (B\A) ≥ f (A)+ f (B)

◮ E.g. the original Steiner Network requirement function is weakly
supermodular.

◮ Theorem 2. For any weakly supermodular requirement function
f , any extremal feasible solution to the fractional Steiner Network
LP satisfies xe ≥ 1/2 for at least one e ∈ E .
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The Steiner Network Problem

◮ This gives the first stage of the algorithm: find an extremal
solution to the fractional SNLP, choose all edges e with xe ≥ 1/2,
round their contributions up and remove them from the network.
Then what?

◮ Given a set of (removed) edges H in a Steiner Network G, the
residual requirement for a cut S is

fH(S) = f (S)−|δH(S)|,

where δH(S) is the set of edges in H crossing S.

◮ Lemma 3. Let G be a Steiner network with requirement function
f , and H a subgraph (set of edges) in G. If f is weakly
supermodular, then so is fH .
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The Steiner Network Problem

The iterated rounding algorithm

1. Set H = /0, f ′ = f .

2. While f ′ 6≡ 0 do:
◮ Find an extremal optimum x for the present fractional SNLP, with

cut requirements f ′.
◮ For each edge e with xe ≥ 1/2, include ⌈xe⌉ copies of e in H, and

decrement ue by this number.
◮ Update f ′: for S ⊆ V , f ′(S) = f (S)−|δH(S)|.

3. Output H.
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The Steiner Network Problem

Remaining questions

◮ Proof of Theorem 2?

◮ Proof of Lemma 3?

◮ Finding extremal optima to fractional SNLP?

◮ Approximation guarantee 2 also for iterated rounding?
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The Steiner Network Problem

Proof of Lemma 3

◮ A cut capacity function g on a graph G = (V ,E) is strongly
submodular if g(V ) = 0 and for any two cuts A,B ⊆ V both of the
following hold:

1. g(A∩B)+ g(A∪B)≤ g(A)+ g(B)
2. g(A\B)+ g(B\A) ≤ g(A)+ g(B)

◮ Lemma 3’. For any graph H on vertex set V , the cut capacity
function |δH(S)| is strongly submodular.
Proof. By case analysis of Venn diagrams.

◮ Lemma 3. Let G be a Steiner network with requirement function
f , and H a subgraph (set of edges) in G. If f (S) is weakly
supermodular, then so is fH(S) = f (S)−|δH(S)|.
Proof. Straightforward from Lemma 3’.
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The Steiner Network Problem

Finding extremal optima to fractional SNLP

◮ By the ellipsoid method.

◮ Separation oracles are provided by max-flow techniques.
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The Steiner Network Problem

Approximation guarantee for iterated rounding

◮ By induction.
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