LP-techniques for facility location and *k*-medians Chs. 24, 25

Risto Hakala

risto.m.hakala@tkk.fi

April 10, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Facility location problem
 - A factor 3 approximation algorithm based on the primal-dual schema is presented.
- k-Median problem
 - A factor 6 approximation algorithm based on the previous algorithm is presented.

ヨト イヨト

Facility location

(中) (문) (문) (문) (문)

Problem 24.1 (Metric uncapacitated facility location)

Let *G* be a complete bipartite graph with bipartition (F, C), where *F* is a set of *facilities* and *C* is the set of *cities*. Let f_i be the cost of opening facility *i*, and c_{ij} be the cost of connecting city *j* to (opened) facility *i*. The connection costs satisfy the triangle inequality.

The problem is to find a subset $I \subseteq F$ of facilities that should be opened, and a function $\phi: C \to I$ assigning cities to open facilities in such a way that the cost of opening facilities and connecting cities is minimized.

• The problem is related to, e.g., locating proxy servers on the internet, and clustering.

Facility location problem as an integer program

- Let y_i and x_{ij} be indicator variables that denote whether facility *i* is open and whether city *j* is connected to facility *i*, respectively.
- We get the following IP:

minimize	$\sum_{i\in F, j\in C} c_{ij} x_{ij} + \sum_{i\in F} f_i y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1,$	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$
	$x_{ij}\in\{0,1\},$	$i \in F, j \in C$
	$y_i\in\{0,1\},$	$i \in F$

4 B N 4 B N

LP-relaxation of the facility location problem

 As usual, the LP-relaxation is obtained by letting the domain of variables y_i and x_{ij} be [0,∞[:

minimize	$\sum_{i \in F, j \in C} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1,$	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$
	$x_{ij} \geq 0,$	$i \in F, j \in C$
	$y_i \geq 0,$	$i \in F$

LP-relaxation of the facility location problem

• The dual program uses variables α_j and β_{ij} :

 $\begin{array}{ll} \text{maximize} & \sum_{j \in \mathcal{C}} \alpha_j \\ \text{subject to} & \alpha_j - \beta_{ij} \leq c_{ij}, \qquad i \in F, j \in \mathcal{C} \\ & \sum_{j \in \mathcal{C}} \beta_{ij} \leq f_i, \qquad i \in F \\ & \alpha_j \geq 0, \qquad j \in \mathcal{C} \\ & \beta_{ii} \geq 0, \qquad i \in F, j \in \mathcal{C} \end{array}$

- The variable β_{ij} can be viewed as the price paid by city j towards opening facility i.
- The variable α_j can be viewed as the total price paid by city j.

- In the primal-dual schema, relaxed versions of complementary slackness conditions are used to guide the algorithm.
- The approximation factor is determined according to how much complementary slackness conditions have to relaxed for them to be satisfied by the solution obtained from the algorithm.
- If a solution satisfies non-relaxed complementary slackness conditions, it is optimal.
- Hence, complementary slackness conditions define desirable properties for the algorithm.

Primal complementary slackness conditions

"The total price paid by the connected city goes towards making the connection and opening the facility."

$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

"Each open facility is fully paid for by the cities."

Dual complementary slackness conditions

$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

"All cities that pay anything must be connected to exactly one facility (with integral solutions)."

$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

"A city does not contribute to opening any (open) facility besides the one that it is connected to."

- The algorithm is divided into two parts: Phase 1 and Phase 2.
- Phase 1 finds a large dual feasible solution $(\vec{\alpha}, \vec{\beta})$ by changing only dual variables α_j and β_{ij} such that feasibility is maintained at all times.
- Phase 2 determines a primal (integral) feasible solution (\vec{x}, \vec{y}) based on the dual solution $(\vec{\alpha}, \vec{\beta})$.
- The approximation factor is determined by observing how much the complementary slackness conditions have to be relaxed in order for them to be satisfied.

Algorithm 24.2 — Phase 1

- Set $(\vec{\alpha}, \vec{\beta}) = (\vec{0}, \vec{0})$, time to 0, and define all cities to be *unconnected*.
- Do until all cities are *connected*:
 - Simultaneously raise α_j for each unconnected city j uniformly at unit rate, i.e., α_j grows 1 in unit time.
 - If α_j = c_{ij} for some edge (i, j), declare this edge to be tight and start also raising β_{ij} uniformly at unit rate until j gets connected.
 - If ∑_j β_{ij} = f_i for some facility i, declare this facility temporarily open and all unconnected cities having tight edges to i connected. Facility i is the connecting witness of cities that are connected to it.
 - If an unconnected city *j* gets a *tight* edge to a *temporarily open* facility, declare *j* connected.

After Phase 1,

- $\alpha_j \beta_{ij} = c_{ij}$ for all tight edges (i, j),
- $\alpha_j < c_{ij}$ for all non-tight edges (i, j),
- $\sum_{i} \beta_{ij} = f_i$ for all temporarily open facilities *i*,
- $\sum_{i} \beta_{ij} < f_i$ for all non-temporarily open facilities *i*.

Therefore, the fractional dual solution $(\vec{\alpha}, \vec{\beta})$ determined in Phase 1 is feasible.

- The set *I* of open facilities is picked from temporarily open facilities.
- Let
 - F_t denote the set of open facilities,
 - T denote the subgraph of G consisting of all "special" edges (i, j) such that $\beta_{ij} > 0$,
 - T^2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and
 - *H* denote the subgraph of T^2 induced on F_t .
- For city j, define $\mathcal{F}_j = \{i \in F_t \mid (i,j) \text{ is special}\}.$

Algorithm 24.2 — Phase 2

- Find any maximal independent set in *H*, say *I*.
- Iterate for all cities *j*:
 - If there is a facility $i \in \mathcal{F}_j$ that is opened $(i \in I)$:
 - Set $\phi(j) = i$ and declare city *j* directly connected.
 - Else pick a tight edge (i', j) such that i' was the connecting witness for j.
 - If $i' \in I$, set $\phi(j) = i'$ and declare j directly connected.
 - If i' ∉ I, pick a neighbor i of i' such that i ∈ I. Set φ(j) = i and declare j indirectly connected.
- Define a primal integral solution as follows:

• Set
$$x_{ij} = 1$$
 iff $\phi(j) = i$.

• Set $y_i = 1$ iff $i \in I$.

伺 ト イヨト イヨト

After Phase 2,

there is a facility i such that φ(j) = i (i.e. x_{ij} = 1) for all cities j,

• $\phi(j) = i$ (i.e. $x_{ij} = 1$) is set only whenever $i \in I$ (i.e. $y_i = 1$).

Therefore, the primal integral solution (\vec{x}, \vec{y}) determined in Phase 2 is feasible.

Dual complementary slackness conditions

•
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

• $\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$

- Condition 1 is satisfied because $x_{ij} = 1$ is set for exactly one $i \in F$ for all $j \in C$.
- Condition 2 is satisfied because
 - $\phi(j) = i$ if $i \in \mathcal{F}_j$ is open, and
 - $\phi(j) \neq i$ if $i \in \mathcal{F}_j$ is not open.

Primal complementary slackness conditions

$$\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

- Condition 2 is satisfied because only temporarily opened facilities are opened fully.
- Condition 1 is satisfied for directly connected cities because a directly connected city j is connected to its facility i through a tight edge (i, j).
- Condition 1 is not necessarily satisfied for indirectly connected cities since an indirectly connected city might not be connected to its facility through a tight edge.

 In order to satisfy all conditions, the first primal complementary condition must be relaxed for indirectly connected cities *j* as follows:

$$(1/3)c_{\phi(j)j} \leq \alpha_j \leq c_{\phi(j)j}.$$

• This leads to an approximation algorithm that satisfies the inequality

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} + 3\sum_{i\in F} f_i y_i \leq 3\sum_{j\in C} \alpha_j.$$

• Hence, the algorithm is a factor 3 approximation algorithm, but with a stronger inequality than typically.

- Denote by α_j^f and α_j^e the contributions of city j to opening facilities and connection costs; $\alpha_j = \alpha_j^f + \alpha_j^e$.
- If j is indirectly connected, then $\alpha_j^f = 0$ and $\alpha_j^e = \alpha_j$.
- If j is directly connected, then $\alpha_j = c_{ij} + \beta_{ij}$, where $i = \phi(j)$.

• Let
$$\alpha_j^f = \beta_{ij}$$
 and $\alpha_j^e = c_{ij}$.

Lemma 24.4

Let $i \in I$. Then,

$$\sum_{:\phi(j)=i}\alpha_j^f=f_i.$$

Proof.

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e., $\sum_{j:\beta_{ij}>0} \beta_{ij} = f_i$. If city *j* has contributed to f_i , it must be directly connected to *i*. For each such city, $\alpha_j^f = \beta_{ij}$. Any other city *j'* that is connected to facility *i* must satisfy $\alpha_{j'}^f = 0$. The lemma follows.

Corollary 24.5

$$\sum_{i\in I} f_i = \sum_{j\in C} \alpha_j^f.$$

Lemma 24.6

For an indirectly connected city j, $c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

(*) *) *) *)

Determination of the approximation factor

Theorem 24.7

The primal and dual solutions constructed by the algorithm satisfy

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} + 3\sum_{i\in F} f_i y_i \leq 3\sum_{j\in C} \alpha_j.$$

Proof.

For a directly connected city j, $c_{ij} = \alpha_j^e \le 3\alpha_j^e$, where $\phi(j) = i$. Combining with Lemma 24.6, we get

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} \leq 3 \sum_{j\in C} \alpha_j^e.$$

Adding to this the equality stated in Corollary 24.5 multiplied by 3 gives the theorem. $\hfill\square$

- Denote $n_c = |C|$ and $n_f = |F|$.
- Sort all the edges by increasing cost this gives the order and the times at which edges go tight.
- For each facility *i*, we maintain the number of cities that are currently contributing towards it, and the *anticipated time*, *t_i*, at which it would be completely paid for if no other event happens on the way.
- *t_i*'s are maintained in a binary heap so we can update each one and find the current minimum in $O(\log n_f)$ time.

- During the execution of the algorithm, *t_i*'s in the binary heap are updated whenever a facility is completely paid for or an edge goes tight.
- Each edge (i, j) will be considered at most twice: first, when it goes tight; second, when city *j* is declared connected.

Theorem 24.8

Algorithm 24.2 achieves an approximation factor of 3 for the facility location problem and has a running time of $O(m \log m)$, where $m = n_c \times n_f$ is the number of edges.

k-Median

・ロト ・御ト ・モト ・モト

Ξ.

Problem 24.1 (Metric *k*-Median)

Let G be a complete bipartite graph with bipartition (F, C), where F is a set of *facilities* and C is the set of *cities*, and let k be a positive integer specifying the number of facilities that are allowed to be opened. Let c_{ij} be the cost of connecting city j to facility i. The connection costs satisfy the triangle inequality.

The problem is to find a subset $I \subseteq F$, $|I| \leq k$ of facilities that should be opened and a function $\phi: C \to I$ assigning cities to open facilities in such a way that the total connecting cost is minimized.

k-Median problem as an integer program

• Using indicator variables y_i and x_{ij} , we get the following IP:

 $\sum c_{ij} x_{ij}$ minimize i∈F.i∈C $\sum x_{ij} \ge 1$, $i \in C$ subject to i∈F $y_i - x_{ii} \ge 0, \qquad i \in F, j \in C$ $\sum -y_i \geq -k$ i∈F $x_{ii} \in \{0, 1\},\$ $i \in F, j \in C$ $i \in F$ $y_i \in \{0, 1\},\$

LP-relaxation of the k-median problem

The LP-relaxation is obtained by letting the domain of variables y_i and x_{ij} be [0,∞[:

minimize	$\sum_{i \in F, j \in C} c_{ij} x_{ij}$	
subject to	$\sum_{i\in F} x_{ij} \ge 1,$	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$
	$\sum_{i\in F} -y_i \ge -k$	
	$x_{ij} \geq 0,$	$i \in F, j \in C$
	$y_i \geq 0$,	$i \in F$

ヨト イヨト

LP-relaxation of the k-median problem

• Introducing the variables α_j and β_{ij} , we obtain the dual program:

maximize	$\sum_{j\in C} \alpha_j - \mathbf{z}\mathbf{k}$	
subject to	$\alpha_j - \beta_{ij} \leq c_{ij},$	$i \in F, j \in C$
	$\sum \beta_{ij} \leq f_i,$	$i \in F$
	$j \in C$: c C
	$\alpha_j \ge 0,$	$j \in C$
	$\beta_{ij} \geq 0,$	$i \in F, j \in C$
	$z \ge 0$	

글 > - < 글 >

э

- Consider a facility location problem, where the opening cost for each facility is $f_i = z$.
- By the strong duality theorem, the optimal fractional solutions (\vec{x}, \vec{y}) and $(\vec{\alpha}, \vec{\beta})$ satisfy

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} + \sum_{i\in F} zy_i = \sum_{j\in C} \alpha_j.$$

Suppose that the primal solution opens exactly k facilities,
 i.e., ∑_i y_i = k.

4 B K 4 B K

• We obtain the equality

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} = \sum_{j\in C} \alpha_j - zk.$$

- Hence, (x, y) and (α, β, z) are optimal fractional solutions to the k-median problem.
- Now, suppose we use Algorithm 24.2 to find primal integral and dual feasible solutions (\vec{x}, \vec{y}) and $(\vec{\alpha}, \vec{\beta})$ to the facility location problem such that exactly k facilities are opened.

• By Theorem 24.7, the solutions satisfy

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} + 3zk \leq 3 \sum_{j\in C} \alpha_j.$$

• Hence, (\vec{x}, \vec{y}) and $(\vec{\alpha}, \vec{\beta}, z)$ are primal integral and dual feasible solutions that satisfy

$$\sum_{i\in F, j\in C} c_{ij} x_{ij} \leq 3\Big(\sum_{j\in C} \alpha_j - zk\Big).$$

• Algorithm 24.2 is a factor 3 approximation algorithm for the *k*-median problem *if* the value of *z* can be chosen such that exactly *k* facilities are opened.

- It is not known how to choose z such that exactly k facilities are opened.
- To overcome this problem, the algorithm is used find solutions (\vec{x}^s, \vec{y}^s) and (\vec{x}', \vec{y}') to z_1 and z_2 , respectively, such that $k_1 < k$, $k_2 > k$, and $z_1 z_2 \le c_{\min}/(12n_c^2)$, where c_{\min} is the length of the shortest edge.
- The values of z_1 and z_2 are determined by conducting a binary search on the interval $[0, nc_{\max}]$, where *n* is the number of nodes and c_{\max} is the length of the longest edge.

• The feasible (fractional) solution

$$(\vec{x}, \vec{y}) = a(\vec{x}^s, \vec{y}^s) + b(\vec{x}', \vec{y}'), \quad ak_1 + bk_2 = k,$$

opens exactly k facilities. Here,

$$a = (k_2 - k)/(k_2 - k_1),$$

 $b = (k - k_1)/(k_2 - k_1).$

Lemma 25.2

The cost of (\vec{x}, \vec{y}) is within a factor of $(3 + 1/n_c)$ of the cost of an optimal fractional solution to the k-median problem.

- An integral solution to the k-median problem is obtained from (\vec{x}, \vec{y}) using a randomized rounding procedure.
- Let A and B be the sets of opened facilities in solutions (\vec{x}^s, \vec{y}^s) and (\vec{x}', \vec{y}') , respectively.
- For each facility in A, find the closest facility in B, and form a set B' ⊂ B using this facilities; if |B'| < |A|, arbitrarily include additional facilities from B − B' into B' until |B'| = |A| = k₁.
- Open the facilities in A with probability $a = (k_2 k)/(k_2 k_1)$, and the facilities in B' with probability $b = (k k_1)/(k_2 k_1)$.
- Pick a set D of cardinality $k k_1$ from B B', and open the facilities in it.

伺 と く ヨ と く ヨ と

- The set of open facilities I is either $A \cup D$ or $B' \cup D$.
- Consider city j that is connected to facilities $i_1 \in A$ and $i_2 \in B$.
- If i₁ is open, set φ(j) = i₁; if i₂ is open, set φ(j) = i₂; otherwise, find the facility i₃ ∈ B' that is closest to i₁ and set φ(j) = i₃.
- Denote by cost(j) the connection cost for city j in the fractional solution; cost(j) = ac_{i1j} + bc_{i2j}.

Lemma 25.3

The expected connection cost for city j in the integral solution, $\mathbf{E}[c_{\phi(j)j}]$, is $\leq (1 + \max(a, b)) \operatorname{cost}(j)$. Moreover, $\mathbf{E}[c_{\phi(j)j}]$ can be efficiently computed.

Lemma 25.4

Let (\vec{x}^k, \vec{y}^k) denote the integral solution obtained to the k-median problem by this randomized rounding procedure. Then,

$$\mathsf{E}\Big[\sum_{i\in F, j\in C} c_{ij} x_{ij}^k\Big] \leq (1 + \max(a, b))\Big(\sum_{i\in F, j\in C} c_{ij} x_{ij}\Big),$$

and, moreover, the expected cost of the solution can be found efficiently.

| 4 同 1 4 三 1 4 三 1

- Derandomization is done by opening those sets which minimize the the previous expectation.
- The final approximation guarantee is $(1 + \max(a, b))(3 + 1/n_c) \le (2 + 1/n_c)(3 + 1/n_c) < 6.$
- The binary search will make $O(L + \log n)$ probes, where $L = \log(c_{\max}/c_{\min})$.

Theorem 25.5

The algorithm achieves an approximation factor of 6 for the k-median problem, and has a running time of $O((m \log m)(L + \log n))$.

.

- A relaxation technique is a method in mathematical optimization for relaxing a strict requirement, e.g., by substituting it with another more easily handled requirement.
- Lagrangian relaxation technique consists of relaxing a (strict) constraint by moving it into the objective function, together with an associated Lagrangian multiplier λ.
- If the relaxed constrained is not satisfied, it induces a penalty on the objective function.

A Lagrangian relaxation technique for the k-median IP

• When applied to the k-median integer program, we obtain

$$\begin{array}{ll} \text{minimize} & \sum_{i \in F, j \in C} c_{ij} x_{ij} + \lambda \Big(\sum_{i \in F} y_i - k \Big) \\ \text{subject to} & \sum_{i \in F} x_{ij} \geq 1, & j \in C \\ & y_i - x_{ij} \geq 0, & i \in F, j \in C \\ & x_{ij} \in \{0, 1\}, & i \in F, j \in C \\ & y_i \in \{0, 1\}, & i \in F \end{array}$$

 This the facility location IP, where the cost of each facility has been set to λ, and an additional constant term -λk has been placed into the objective function.

- For the facility location problem, a factor 3 approximation algorithm based on the primal-dual schema was presented.
- This algorithm was used to construct a factor 6 approximation algorithm for the *k*-median problem.
- The primal-dual schema was used slightly differently here than in the previously presented algorithms.