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Outline

Facility location problem

A factor 3 approximation algorithm based on the primal-dual
schema is presented.

k-Median problem

A factor 6 approximation algorithm based on the previous
algorithm is presented.
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Facility location



Facility location problem

Problem 24.1 (Metric uncapacitated facility location)

Let G be a complete bipartite graph with bipartition (F ,C ), where
F is a set of facilities and C is the set of cities. Let fi be the cost
of opening facility i , and cij be the cost of connecting city j to
(opened) facility i . The connection costs satisfy the triangle
inequality.

The problem is to find a subset I ⊆ F of facilities that should be
opened, and a function φ : C → I assigning cities to open facilities
in such a way that the cost of opening facilities and connecting
cities is minimized.

The problem is related to, e.g., locating proxy servers on the
internet, and clustering.
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Facility location problem as an integer program

Let yi and xij be indicator variables that denote whether
facility i is open and whether city j is connected to facility i ,
respectively.

We get the following IP:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C

xij ∈ {0, 1}, i ∈ F , j ∈ C

yi ∈ {0, 1}, i ∈ F
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LP-relaxation of the facility location problem

As usual, the LP-relaxation is obtained by letting the domain
of variables yi and xij be [0,∞[:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C

xij ≥ 0, i ∈ F , j ∈ C

yi ≥ 0, i ∈ F
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LP-relaxation of the facility location problem

The dual program uses variables αj and βij :

maximize
∑
j∈C

αj

subject to αj − βij ≤ cij , i ∈ F , j ∈ C∑
j∈C

βij ≤ fi , i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F , j ∈ C

The variable βij can be viewed as the price paid by city j
towards opening facility i .

The variable αj can be viewed as the total price paid by city j .
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Primal-dual schema

In the primal-dual schema, relaxed versions of complementary
slackness conditions are used to guide the algorithm.

The approximation factor is determined according to how
much complementary slackness conditions have to relaxed for
them to be satisfied by the solution obtained from the
algorithm.

If a solution satisfies non-relaxed complementary slackness
conditions, it is optimal.

Hence, complementary slackness conditions define desirable
properties for the algorithm.
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Complementary slackness conditions

Primal complementary slackness conditions

1 ∀i ∈ F , j ∈ C : xij > 0⇒ αj − βij = cij

“The total price paid by the connected city goes towards
making the connection and opening the facility.”

2 ∀i ∈ F : yi > 0⇒
∑

j∈C βij = fi

“Each open facility is fully paid for by the cities.”
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Complementary slackness conditions

Dual complementary slackness conditions

1 ∀j ∈ C : αj > 0⇒
∑

i∈F xij = 1

“All cities that pay anything must be connected to exactly
one facility (with integral solutions).”

2 ∀i ∈ F , j ∈ C : βij > 0⇒ yi = xij

“A city does not contribute to opening any (open) facility
besides the one that it is connected to.”
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Primal-dual schema based algorithm

The algorithm is divided into two parts: Phase 1 and Phase 2.

Phase 1 finds a large dual feasible solution (~α, ~β) by changing
only dual variables αj and βij such that feasibility is
maintained at all times.

Phase 2 determines a primal (integral) feasible solution (~x , ~y)
based on the dual solution (~α, ~β).

The approximation factor is determined by observing how
much the complementary slackness conditions have to be
relaxed in order for them to be satisfied.

Risto Hakala LP-techniques for facility location and k-medians



Primal-dual schema based algorithm — Phase 1

Algorithm 24.2 — Phase 1

Set (~α, ~β) = (~0,~0), time to 0, and define all cities to be
unconnected.

Do until all cities are connected:

Simultaneously raise αj for each unconnected city j uniformly
at unit rate, i.e., αj grows 1 in unit time.
If αj = cij for some edge (i , j), declare this edge to be tight
and start also raising βij uniformly at unit rate until j gets
connected.
If
∑

j βij = fi for some facility i , declare this facility
temporarily open and all unconnected cities having tight edges
to i connected. Facility i is the connecting witness of cities
that are connected to it.
If an unconnected city j gets a tight edge to a temporarily
open facility, declare j connected.
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Primal-dual schema based algorithm — Phase 1

After Phase 1,

αj − βij = cij for all tight edges (i , j),

αj < cij for all non-tight edges (i , j),∑
j βij = fi for all temporarily open facilities i ,∑
j βij < fi for all non-temporarily open facilities i .

Therefore, the fractional dual solution (~α, ~β) determined in Phase
1 is feasible.
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Primal-dual schema based algorithm — Phase 2

The set I of open facilities is picked from temporarily open
facilities.

Let

Ft denote the set of open facilities,
T denote the subgraph of G consisting of all “special” edges
(i , j) such that βij > 0,
T 2 denote the graph that has edge (u, v) iff there is a path of
length at most 2 between u and v in T , and
H denote the subgraph of T 2 induced on Ft .

For city j , define Fj = {i ∈ Ft | (i , j) is special}.

Risto Hakala LP-techniques for facility location and k-medians



Primal-dual schema based algorithm — Phase 2

Algorithm 24.2 — Phase 2

Find any maximal independent set in H, say I .

Iterate for all cities j :
If there is a facility i ∈ Fj that is opened (i ∈ I ):

Set φ(j) = i and declare city j directly connected.

Else pick a tight edge (i ′, j) such that i ′ was the connecting
witness for j .

If i ′ ∈ I , set φ(j) = i ′ and declare j directly connected.
If i ′ /∈ I , pick a neighbor i of i ′ such that i ∈ I . Set φ(j) = i
and declare j indirectly connected.

Define a primal integral solution as follows:

Set xij = 1 iff φ(j) = i .
Set yi = 1 iff i ∈ I .
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Primal-dual schema based algorithm — Phase 2

After Phase 2,

there is a facility i such that φ(j) = i (i.e. xij = 1) for all
cities j ,

φ(j) = i (i.e. xij = 1) is set only whenever i ∈ I (i.e. yi = 1).

Therefore, the primal integral solution (~x , ~y) determined in Phase
2 is feasible.
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What about complementary slackness conditions?

Dual complementary slackness conditions

1 ∀j ∈ C : αj > 0⇒
∑

i∈F xij = 1

2 ∀i ∈ F , j ∈ C : βij > 0⇒ yi = xij

Condition 1 is satisfied because xij = 1 is set for exactly one
i ∈ F for all j ∈ C .

Condition 2 is satisfied because

φ(j) = i if i ∈ Fj is open, and
φ(j) 6= i if i ∈ Fj is not open.
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What about complementary slackness conditions?

Primal complementary slackness conditions

1 ∀i ∈ F , j ∈ C : xij > 0⇒ αj − βij = cij

2 ∀i ∈ F : yi > 0⇒
∑

j∈C βij = fi

Condition 2 is satisfied because only temporarily opened
facilities are opened fully.

Condition 1 is satisfied for directly connected cities because a
directly connected city j is connected to its facility i through a
tight edge (i , j).

Condition 1 is not necessarily satisfied for indirectly connected
cities since an indirectly connected city might not be
connected to its facility through a tight edge.
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What about complementary slackness conditions?

In order to satisfy all conditions, the first primal
complementary condition must be relaxed for indirectly
connected cities j as follows:

(1/3)cφ(j)j ≤ αj ≤ cφ(j)j .

This leads to an approximation algorithm that satisfies the
inequality ∑

i∈F ,j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj .

Hence, the algorithm is a factor 3 approximation algorithm,
but with a stronger inequality than typically.
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Determination of the approximation factor

Denote by αf
j and αe

j the contributions of city j to opening

facilities and connection costs; αj = αf
j + αe

j .

If j is indirectly connected, then αf
j = 0 and αe

j = αj .

If j is directly connected, then αj = cij + βij , where i = φ(j).

Let αf
j = βij and αe

j = cij .
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Determination of the approximation factor

Lemma 24.4

Let i ∈ I . Then, ∑
j :φ(j)=i

αf
j = fi .

Proof.

Since i is temporarily open at the end of Phase 1, it is completely
paid for, i.e.,

∑
j :βij>0 βij = fi . If city j has contributed to fi , it

must be directly connected to i . For each such city, αf
j = βij . Any

other city j ′ that is connected to facility i must satisfy αf
j ′ = 0.

The lemma follows.
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Determination of the approximation factor

Corollary 24.5 ∑
i∈I

fi =
∑
j∈C

αf
j .

Lemma 24.6

For an indirectly connected city j, cij ≤ 3αe
j , where i = φ(j).
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Determination of the approximation factor

Theorem 24.7

The primal and dual solutions constructed by the algorithm satisfy∑
i∈F ,j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj .

Proof.

For a directly connected city j , cij = αe
j ≤ 3αe

j , where φ(j) = i .
Combining with Lemma 24.6, we get∑

i∈F ,j∈C

cijxij ≤ 3
∑
j∈C

αe
j .

Adding to this the equality stated in Corollary 24.5 multiplied by 3
gives the theorem.
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Running time

Denote nc = |C | and nf = |F |.
Sort all the edges by increasing cost — this gives the order
and the times at which edges go tight.

For each facility i , we maintain the number of cities that are
currently contributing towards it, and the anticipated time, ti ,
at which it would be completely paid for if no other event
happens on the way.

ti ’s are maintained in a binary heap so we can update each
one and find the current minimum in O(log nf ) time.
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Running time

During the execution of the algorithm, ti ’s in the binary heap
are updated whenever a facility is completely paid for or an
edge goes tight.

Each edge (i , j) will be considered at most twice: first, when
it goes tight; second, when city j is declared connected.

Theorem 24.8

Algorithm 24.2 achieves an approximation factor of 3 for the
facility location problem and has a running time of O(m log m),
where m = nc × nf is the number of edges.
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k-Median



k-Median problem

Problem 24.1 (Metric k-Median)

Let G be a complete bipartite graph with bipartition (F ,C ), where
F is a set of facilities and C is the set of cities, and let k be a
positive integer specifying the number of facilities that are allowed
to be opened. Let cij be the cost of connecting city j to facility i .
The connection costs satisfy the triangle inequality.

The problem is to find a subset I ⊆ F , |I | ≤ k of facilities that
should be opened and a function φ : C → I assigning cities to open
facilities in such a way that the total connecting cost is minimized.
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k-Median problem as an integer program

Using indicator variables yi and xij , we get the following IP:

minimize
∑

i∈F ,j∈C

cijxij

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C∑
i∈F

−yi ≥ −k

xij ∈ {0, 1}, i ∈ F , j ∈ C

yi ∈ {0, 1}, i ∈ F
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LP-relaxation of the k-median problem

The LP-relaxation is obtained by letting the domain of
variables yi and xij be [0,∞[:

minimize
∑

i∈F ,j∈C

cijxij

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C∑
i∈F

−yi ≥ −k

xij ≥ 0, i ∈ F , j ∈ C

yi ≥ 0, i ∈ F
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LP-relaxation of the k-median problem

Introducing the variables αj and βij , we obtain the dual
program:

maximize
∑
j∈C

αj − zk

subject to αj − βij ≤ cij , i ∈ F , j ∈ C∑
j∈C

βij ≤ fi , i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F , j ∈ C

z ≥ 0
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The high-level idea

Consider a facility location problem, where the opening cost
for each facility is fi = z .

By the strong duality theorem, the optimal fractional solutions
(~x , ~y) and (~α, ~β) satisfy∑

i∈F ,j∈C

cijxij +
∑
i∈F

zyi =
∑
j∈C

αj .

Suppose that the primal solution opens exactly k facilities,
i.e.,

∑
i yi = k .
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The high-level idea

We obtain the equality∑
i∈F ,j∈C

cijxij =
∑
j∈C

αj − zk .

Hence, (~x , ~y) and (~α, ~β, z) are optimal fractional solutions to
the k-median problem.

Now, suppose we use Algorithm 24.2 to find primal integral
and dual feasible solutions (~x , ~y) and (~α, ~β) to the facility
location problem such that exactly k facilities are opened.
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The high-level idea

By Theorem 24.7, the solutions satisfy∑
i∈F ,j∈C

cijxij + 3zk ≤ 3
∑
j∈C

αj .

Hence, (~x , ~y) and (~α, ~β, z) are primal integral and dual
feasible solutions that satisfy∑

i∈F ,j∈C

cijxij ≤ 3
(∑

j∈C

αj − zk
)
.

Algorithm 24.2 is a factor 3 approximation algorithm for the
k-median problem if the value of z can be chosen such that
exactly k facilities are opened.
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The high-level idea

It is not known how to choose z such that exactly k facilities
are opened.

To overcome this problem, the algorithm is used find solutions
(~x s , ~y s) and (~x l , ~y l) to z1 and z2, respectively, such that
k1 < k, k2 > k , and z1 − z2 ≤ cmin/(12n2

c), where cmin is the
length of the shortest edge.

The values of z1 and z2 are determined by conducting a binary
search on the interval [0, ncmax], where n is the number of
nodes and cmax is the length of the longest edge.
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The high-level idea

The feasible (fractional) solution

(~x , ~y) = a(~x s , ~y s) + b(~x l , ~y l), ak1 + bk2 = k,

opens exactly k facilities. Here,

a = (k2 − k)/(k2 − k1),

b = (k − k1)/(k2 − k1).

Lemma 25.2

The cost of (~x , ~y) is within a factor of (3 + 1/nc) of the cost of an
optimal fractional solution to the k-median problem.
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Randomized rounding

An integral solution to the k-median problem is obtained from
(~x , ~y) using a randomized rounding procedure.

Let A and B be the sets of opened facilities in solutions
(~x s , ~y s) and (~x l , ~y l), respectively.

For each facility in A, find the closest facility in B, and form a
set B ′ ⊂ B using this facilities; if |B ′| < |A|, arbitrarily include
additional facilities from B − B ′ into B ′ until |B ′| = |A| = k1.

Open the facilities in A with probability
a = (k2 − k)/(k2 − k1), and the facilities in B ′ with
probability b = (k − k1)/(k2 − k1).

Pick a set D of cardinality k − k1 from B − B ′, and open the
facilities in it.
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Randomized rounding

The set of open facilities I is either A ∪ D or B ′ ∪ D.

Consider city j that is connected to facilities i1 ∈ A and
i2 ∈ B.

If i1 is open, set φ(j) = i1; if i2 is open, set φ(j) = i2;
otherwise, find the facility i3 ∈ B ′ that is closest to i1 and set
φ(j) = i3.

Denote by cost(j) the connection cost for city j in the
fractional solution; cost(j) = aci1j + bci2j .
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Randomized rounding

Lemma 25.3

The expected connection cost for city j in the integral solution,
E[cφ(j)j ], is ≤ (1 + max(a, b))cost(j). Moreover, E[cφ(j)j ] can be
efficiently computed.

Lemma 25.4

Let (~xk , ~yk) denote the integral solution obtained to the k-median
problem by this randomized rounding procedure. Then,

E
[ ∑

i∈F ,j∈C

cijx
k
ij

]
≤ (1 + max(a, b))

( ∑
i∈F ,j∈C

cijxij

)
,

and, moreover, the expected cost of the solution can be found
efficiently.
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Randomized rounding

Derandomization is done by opening those sets which
minimize the the previous expectation.

The final approximation guarantee is
(1 + max(a, b))(3 + 1/nc) ≤ (2 + 1/nc)(3 + 1/nc) < 6.

The binary search will make O(L + log n) probes, where
L = log(cmax/cmin).

Theorem 25.5

The algorithm achieves an approximation factor of 6 for the
k-median problem, and has a running time of
O((m log m)(L + log n)).
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A Lagrangian relaxation technique for approximation
algorithms

A relaxation technique is a method in mathematical
optimization for relaxing a strict requirement, e.g., by
substituting it with another more easily handled requirement.

Lagrangian relaxation technique consists of relaxing a (strict)
constraint by moving it into the objective function, together
with an associated Lagrangian multiplier λ.

If the relaxed constrained is not satisfied, it induces a penalty
on the objective function.
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A Lagrangian relaxation technique for the k-median IP

When applied to the k-median integer program, we obtain

minimize
∑

i∈F ,j∈C

cijxij + λ
(∑

i∈F

yi − k
)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C

xij ∈ {0, 1}, i ∈ F , j ∈ C

yi ∈ {0, 1}, i ∈ F

This the facility location IP, where the cost of each facility has
been set to λ, and an additional constant term −λk has been
placed into the objective function.
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Summary

For the facility location problem, a factor 3 approximation
algorithm based on the primal-dual schema was presented.

This algorithm was used to construct a factor 6 approximation
algorithm for the k-median problem.

The primal-dual schema was used slightly differently here than
in the previously presented algorithms.
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