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Linear programming and LP-duality



Linear programs

Minimization linear program:

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n,

where aij , bi , and cj are given rational numbers.

Feasible solutions ~x = (x1, . . . , xn) to this program provide Yes
certificates for the question “Is the optimum value less than or
equal to α?”
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Linear programs

Maximization linear program:

maximize
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m,

where aij , bi , and cj are given rational numbers.

Feasible solutions ~y = (y1, . . . , ym) to this program provide
No certificates for the question “Is the optimum value less
than or equal to α?”
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LP-duality

Let a minimization linear program be the primal program.

Theorem 12.2 (Weak duality theorem)

If ~x = (x1, . . . , xn) and ~y = (y1, . . . , ym) are feasible solutions for
the primal and dual program, respectively, then

n∑
j=1

cjxj ≥
m∑

i=1

biyi . (1)

By the LP-duality theorem, (1) holds with equality iff both ~x and ~y
are optimal solutions.
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Set cover via dual fitting



Dual fitting

In order to establish the approximation guarantee, the cost of
the solution produced by the algorithm needs to be compared
with the cost of an optimal solution.

Since it is NP-hard to find the cost of an optimal solution of
a minimization (resp. maximization) problem, we try to get
around this by coming up with a polynomial time computable
lower (resp. upper) bound on OPT.

Dual fitting is a powerful method which helps finding a good
bound on OPT using LP-duality theory.

In this presentation, dual fitting is used to analyze the natural
greedy algorithm for the set cover problem.
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Idea behind dual fitting

Dual fitting uses the linear programming relaxation of the
problem and its dual to find the approximation guarantee of
the algorithm.

It is shown that the objective function value of the primal
solution found by the algorithm is at most the objective
function value of the dual computed; however, the dual is
infeasible.

The approximation guarantee is obtained by scaling the dual
solution by a suitable factor F such that the solution becomes
feasible.

The shrunk dual is a lower bound on OPT by the weak duality
theorem (Theorem 12.2), and the factor F is the
approximation guarantee.
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Set cover via dual fitting

Problem 2.1 (Set cover)

Given a universe U of n elements, a collection of subsets of U,
S = {S1, . . . ,Sk}, and a cost function c : S → Q+, find a
minimum cost subcollection of S that covers all elements of U.

Theorem 2.4

The greedy set cover algorithm (Algorithm 2.2) is an Hn factor
approximation algorithm for the minimum set cover problem,
where Hn = 1 + 1

2 + · · ·+ 1
n .

It is shown how the approximation factor Hn is derived via dual
fitting.
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Greedy set cover algorithm

Algorithm 2.2 (Greedy set cover algorithm)

1 C ← ∅
2 While C 6= U do

Find the set S whose cost-effectivness c(S)/|S − C | is
smallest.
Let α = c(S)/|S − C |.
Pick S, and for each e ∈ S − C, set price(e) = α.
C ← C ∪ S.

3 Output the picked sets.
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Set cover problem as an integer program

Let xS ∈ {0, 1} be a variable which is set to 1 iff set S ∈ S is
picked in the set cover.

The set cover problem can be stated then as an integer linear
program:

minimize
∑
S∈S

c(S)xS

subject to
∑

S : e∈S

xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S
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LP-relaxation of the set cover problem

The LP-relaxation of this integer program is obtained by
letting the domain of variables xS be [0,∞[:

minimize
∑
S∈S

c(S)xS subject to
∑

S : e∈S

xS ≥ 1, xS ≥ 0.

Introducing the variable ye for each e ∈ U, we obtain the dual
program:

maximize
∑
e∈U

ye subject to
∑

e : e∈S

ye ≤ c(S), ye ≥ 0.
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Analysis of the greedy set cover algorithm

The original algorithm defines dual variables price(e) for each
element e.

This leads to (generally) infeasible dual solutions such that∑
S∈S

c(S)xS =
∑
e∈U

price(e),

i.e., the cost of the primal solution is at most the cost of the
dual computed.

We get a feasible solution by defining dual variables ye as

ye =
price(e)

Hn
, e ∈ U.
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Analysis of the greedy set cover algorithm

Lemma 13.2

The vector ~y defined as ye = price(e)/Hn, e ∈ U, is a feasible
solution for the dual program of the LP-relaxed set cover problem.

Proof.

Consider a set S ∈ S consisting of k elements. Number the
elements in the order in which they are covered by the algorithm,
say e1, . . . , ek . Consider the iteration in which the algorithm covers
element ei . In this case, at most i − 1 elements have been covered
by the cover C . Hence, S covers ei at an average cost of at most
c(S)/|S − C | = c(S)/(k − (i − 1)).
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Analysis of the greedy set cover algorithm

Proof, cont’d.

Since the algorithm chooses the most cost-effective set in this
iteration, price(ei ) ≤ c(S)/(k − i + 1). Thus,

yei =
price(ei )

Hn
≤ 1

Hn
· c(S)

k − i + 1
.

Summing over all elements in S ,

k∑
i=1

yei ≤
c(S)

Hn
·
(

1

k
+

1

k − 1
+ · · ·+ 1

1

)
=

Hk

Hn
· c(S) ≤ c(S).

Therefore, S is not overpacked.
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Analysis of the greedy set cover algorithm

Theorem 13.3

The approximation guarantee of the greedy set cover algorithm is
Hn.

Proof.

The cost of the set cover picked is

∑
e∈U

price(e) = Hn

(∑
e∈U

ye

)
≤ Hn · OPTf ≤ Hn · OPT,

where the first inequality follows from the weak LP-duality theorem
and the fact that ~y is feasible.
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Analysis of the greedy set cover algorithm

As a corollary, we get an upper bound of Hn on the integrality
gap of the LP-relaxation.

This bound is essentially tight, so Hn is indeed the best
approximation factor one can achieve using this relaxation.

The greedy algorithm and its analysis using dual fitting extend
naturally to several generalizations of the set cover problem.
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Constrained set multicover via dual fitting

Constrained set multicover problem

Each element e in the universe U needs to be covered a specific
number re of times. Each set S ∈ S is allowed to be picked at
most once.

The corresponding integer program is derived as before.

minimize
∑
S∈S

c(S)xS

subject to
∑

S : e∈S

xS ≥ re , e ∈ U

xS ∈ {0, 1}, S ∈ S
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LP-relaxation of constrained set multicover

The constraint xS ≤ 1 in the LP-relaxation is no longer
redundant because each set should be picked at most once:

minimize
∑
S∈S

c(S)xS

subject to
∑

S : e∈S

xS ≥ re , e ∈ U

− xS ≥ −1, S ∈ S
xS ≥ 0, S ∈ S
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LP-relaxation of constrained set multicover

Introducing ye for each e ∈ U and zS for each S ∈ S, we
obtain the dual program:

maximize
∑
e∈U

reye −
∑
S∈S

zS

subject to
∑

e : e∈S

ye − zS ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

zS ≥ 0, S ∈ S
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A greedy algorithm for constrained set multicover

Let us say that an element e is alive if it occurs in fewer than
re times of the picked sets.

In each iteration, the algorithm picks the most cost-effective
unpicked set, where the cost-effectiveness is defined as the
average cost at which it covers alive elements.

The algorithm halts when there are no more alive elements.

The approximation guarantee of Hn is achieved again.

The analysis of this algorithm is similar as with set cover, but
more technical.
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Constrained set multicover via dual fitting

Set price(e, je) to be the cost-effectiveness of the set S which
covers e for the jeth time.

The algorithm gives an infeasible dual solution (~α, ~β), where

αe = price(e, re) and βS =
∑

e : e∈S

(price(e, re)− price(e, je)).

A feasible solution (~y ,~z) is obtained by scaling

ye =
αe

Hn
and zS =

βS

Hn
.
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Rounding applied to set cover



Rounding applied to set cover

LP-rounding technique is used to design approximation
algorithms for the set cover problem.

The first rounding algorithm achieves an approximation
guarantee of f , where f is the frequency of the most frequent
element.

The second algorithm, achieving a guarantee of O(log n),
illustrates the use of randomization in rounding.
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A simple rounding algorithm

Algorithm 14.1 (Set cover via LP-rounding)

1 Find an optimal solution to the LP-relaxation.

2 Pick all sets S for which xS ≥ 1/f in this solution.
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Analysis of the simple rounding algorithm

Theorem 14.2

Algorithm 14.1 achieves an approximation factor of f for the set
cover problem.

Proof.

Let C be the collection of picked sets. An element e is in at most f
sets. It is covered by C because one set must be picked to the
extend of at least 1/f in the fractional cover. Hence, C is a valid
set cover. Rounding increases xS by a factor of at most f .
Therefore, the cost of C is at most f times the cost of the
fractional cover.
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Randomized rounding applied to set cover

Fractions in an optimal fractional solution are viewed as
probabilities.

Rounding is done by flipping coins with these biases and
rounding accordingly.

Repeating this process O(log n) times, and picking a set if it
is chosen in any of the iterations, we get a set cover with high
probability, by a standard coupon collector argument.

The expected cost of the cover is

O(log n) · OPTf ≤ O(log n) · OPT.
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Set cover via the primal-dual schema



Primal-dual schema

Primal-dual schema is another method for designing
approximation algorithms using linear programming.

Optimal solutions to linear programs are characterized by the
fact that they satisfy all the complementary slackness
conditions (Theorem 12.3).

Primal-dual schema is driven by a relaxed version of these
conditions: a solution is constructed iteratively such that it
satisfies the relaxed versions of complementary slackness
conditions at all times.

Another factor f algorithm for the set cover problem is
presented.
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Relaxed complementary slackness conditions

Primal complementary slackness conditions

Let α ≥ 1.
For each 1 ≤ j ≤ n: either xj = 0 or cj/α ≤

∑m
i=1 aijyi ≤ cj .

Dual complementary slackness conditions

Let β ≥ 1.
For each 1 ≤ i ≤ m: either yi = 0 or bi/ ≤

∑n
j=1 aijxj ≤ β · bi .

By Theorem 12.3, solutions ~x and ~y are both optimal iff α = 1 and
β = 1.
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Overview of the schema

Proposition 15.1

If ~x and ~y are primal and dual feasible solutions satisfying the
slackness conditions, then

n∑
j=1

cjxj ≤ αβ

m∑
i=1

biyi .

Proof.

From slackness conditions, we get cjxj ≤ αxj
∑m

i=1 aijyi and
αyi
∑n

j=1 aijxj ≤ αβbiyi . It follows that

n∑
j=1

cjxj ≤
m∑

i=1

αyi

n∑
j=1

aijxj ≤ αβ
m∑

i=1

biyi .
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Overview of the schema

Pick a primal infeasible solution ~x , and a dual feasible solution
~y , such that the slackness conditions are satisfied for chosen α
and β.

Iteratively improve the feasibility of ~x (integrally) and the
optimality of ~y , such that the conditions remain satisfied,
until ~x becomes feasible.

An approximation guarantee of αβ is achieved using this
schema, since

n∑
j=1

cjxj ≤ αβ

m∑
i=1

biyi ≤ αβ · OPTf ≤ αβ · OPT

by Proposition 15.1 and the LP-duality theorem.
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Primal-dual schema applied to set cover

Set α = 1 and β = f . Set S is called tight if
∑

e : e∈S ye = c(S).

Primal conditions, “Pick only tight sets in the cover”

∀S ∈ S : xS 6= 0⇒
∑

e : e∈S

ye = c(S)

Dual conditions, “Each e, ye 6= 0, can be covered at most f times”

∀e : ye 6= 0⇒
∑

S : e∈S

xS ≤ f
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Primal-dual schema applied to set cover

Algorithm 15.2 (Set cover – factor f )

1 Initialization: ~x ← ~0; ~y ← ~0.

2 Until all elements are covered, do
Pick an uncovered element e, and raise ye until some set goes
tight.
Pick all tight sets in the cover and update ~x.
Declare all the elements occuring in these sets as “covered”.

3 Output the set cover ~x.
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Primal-dual schema applied to set cover

Theorem 15.3

Algorithm 15.2 achieves an approximation factor of f .

Proof.

Clearly, there will be no uncovered and no overpacked sets in the
end. Thus, primal and dual solutions will be feasible. Since they
satisfy the relaxed complementary slackness conditions with α = 1
and β = f , the approximation factor is f by Proposition 15.1.
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Summary

Dual fitting provides a way for analyzing approximation
algorithms.

Rounding and the primal-dual schema can be used to design
approximation algorithms.

These methods were applied in analysis of the set cover
problem.

LP-duality theory proved to be extremely useful.
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