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5.1 Introduction

Motivation: Relation to boolean circuits and open problems in complexity
theory (e.g. co-NP 7= NP).

Definition: Tautology is a propositional formula which is true in every
truth assignment. If ) = T, then T is a tautology.

Tautologies can be proved with different proof systems. The length (or
complexity) of the proof depends on axioms and rules of interference of
the system.
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There are many different proof systems, including:

Gentzen propositional sequent calculus (LK)
resolution (R)
Nullstellensatz systems (NS)

>
>

>

» polynomial calculus (PC)

» cutting planes (CP)

» propositional treshold calculus (PTK)
> Frege systems (F)

>

extended Frege systems (EF)
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Example: A Frege system using only connectives — and —.

Axioms:

1. F—-(G—F)

2. (F—(G—H))— (F—G)— (F—H))
3. (ﬂF — —\G) — ((_\F — —\G) — F)

The only rule of inference, modus ponens:

p,p—4q
q

One can prove every propositional tautology using these axioms and
modus ponens.
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Some notations

If formula F' can be derived from T (set of formulas), we denote T + F'.
This means there is a sequence P = (F1, ..., F,) such that F,, = F, and
for each 1 < i < n, Fj either belongs to set T or is derived from the
previous formulas F};, where ¢ > j.

If D F (or - F) then F'is a theorem and derivation P is the proof of
F. Proof system P, which was used, is indicated by notation THp F
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More definitions

Proof system P is sound if every theorem F' of P is valid (= F).
Moreover, P is implicationally complete if for any propositional formulas
Fy, ..., Fy,G it is the case that I, ..., Fi, = G implies F, ..., FyFpG.

Length of proof P = (F}, ..., F},) is n (the number of inferences or steps).

The size of proof P is Y., |F;|, where |F;| is the number of symbols in
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5.2 Complexity of Proofs

Generalization of a proof system

Let 31 and X be finite alphabets such that their cardinality is two or
greater and let L C X.3. Propositional proof system for L is a polynomial
time computable surjection f : 37 — L.

Note that typically L is collection TAUT and for example in the De
Morgan basis ¥ = {0,1,—,A, 2, (', )'}. Different variables can be
represented as string xb where b is a binary number.

Proof system f : ¥* — L is polynomially bounded if there is a
polynomial p such that

(Ve e L)(Fy € ) (f(y) = z Ayl < p(lz])) (1)
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Theorem 5.2.1

NP = co-NP < There is a polynomially bounded propositional proof
system for TAUT.

Proof. x e TAUT & —x € UNSAT.

Thus, -z ¢ TAUT <« ¢ UNSAT < © € SAT.

Because SAT is NP-complete, TAUT must be co-NP-complete.

"= Let ¥ =10,1,—-, A2,/ ("))} TAUT € co-NP, so TAUT € NP.
Hence there is a polynomial p and a polynomial time computable relation
R such that Vo : 2 € TAUT < (3y € *)(R(z,y) Ayl < p(|z])).

This makes sense, because a nondeterministic Turing machine on input z
can guess y and verify that y is correct by R(z,y).

Define propositional proof system f: (XU {'<’'),/>"})* — TAUT by

flw)==a,if Jy: R(z,y) ANw =< z,y > and f(w) = pV —p otherwise.
Now f is polynomially bounded.
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"

<": Let f:T* — TAUT be a polynomially bounded propositional
proof system for TAUT. Let p satisfy the corresponding definition:
Ve:x € TAUT & (3y € T)(f(y) =z A ly] < p(|x])). From this
definition we obtain that TAUT € NP. Assume R € co-NP. Because
TAUT is co-NP-complete, R is polynomially reducible to TAUT .
Because TAUT € NP so is R. Thus, co-NP = NP. [0

Note that Theorem 5.2.1 holds for any finite, adequate set of connectives.
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Definition

A propositional proof system T is automatizable if there is an algorithm
Ar, which given any propositional formula A yields a proof in T of A in
time polynomial in size of A, provided that such exists.
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New definitions

vV v v v

Propositional connective is a function symbol of given arity

Formula in the set x of connectives is a finite, rooted, ordered,
labeled tree, which is either a single node labeled by a variable or
whose root is labeled by a connective of arity n from «, and whose
children F, ..., F, are formulas

The size of formula F', denoted by |F|, is the total number of
symbols in F

The formula size (f(F)) is the total number of connectives in F’
The circuit size (c¢(F')) is the number of distinct subformulas in F'
The leaf size (|| F||) is the number of occurrences of variables in F'

The root is called principal connective
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Example: Frege system ¥ = {z,0,1,—, —}.

|lzi| =1+ i

|~F| =1+ |F]

|IF— G| =1+ |F|+ |G|

||zi]| =1

|[=F|| = [|F]]

I|1F'— G| = |F|[ + [|G]]

f(F) = “number of gates in the formula tree”

¢(F) = "minimum number of gates in a circuit which represents F"

Assume that all connectives of formula F' have arity at most k and there
are never two successive occurances of a unary connective and variables
appearing in F are x1, ..., T, where m = || F||.

Then f(F) + ||F|| is the number of nodes in the formula tree. Clearly
1| < [F| = O(|F[|logz|| F'l])-
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Definitions

For proof system F' and tautology 7', sizer(T) is the minimum size of
proof P of T in system F. Relations between different types of size can
be easily found (e.g. ¢(F) < f(F)).

Total truth assginment is a mapping o : {z1,...,z,} — {0,1}. A boolean
function f € B,, is represented by formula F if f(o0) = F |, for all total
truth assignments in {0,1}".

A set k of connectives is adequate if every boolean function can be
represented by a formula in x. A tautology T' € TAUT, is a tautology in
the connective set k. Similarly, Form, is the set of formulas in
connective set k. Let Form denote the set of formulas over the De
Morgan set {0,1,—,V, A} of connectives.
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Theorem 5.2.2

There is a polynomial time computable translation ¢r : Form, — Form
satisfying tr(F) = F for all F € Form,,, and which is surjective in the
sense that for every G € Form there exists F' € Form, such that
tr(F)=G.

Proof. Left for an optional home excercise.

Note that now Theorem 5.2.1 holds for TAUT,; in place of TAUT.

Theorem 5.2.1 also implies that if no propositional proof system is
polynomially bounded for TAUT then P # NP.
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Pigeonhole principle

If n+ 1 pigeons occupy n pigeonholes at least one hole must be occupied
by at least two pigeons. This example demonstrates how this can be
written as a propositional logic formula. Let m be the number of pigeons
and m > n, and let p; ; be a propositional variable, whose interpretation
is that the pigeon i sits in hole j.

m n n
B /\ \/ pijV \/ \/ (pij A pir,j) (2)
i=1j=1 1<i<i <m j=1

This formula is naturally a tautology with O(m?n) symbols. The formula
expresses that there is no injective relation from set of size m into a set
of size n.
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Last definitions before the next chapter

Let f, g be proof systems such that f : X5 — TAUT and

g: X5 — TAUT. Then g p-simulates f if there is a polynomial time
computable function h : 37 — X% such that g(h(z)) = f(z) for all

r € X.

Alternatively if i is polynomially bounded, but not necessarily polynomial
time computable, let P; and P be arbitary proof systems for
propositional logic. System P; simulates P if and only if there is a
polynomial p(x) such that for any proof @ of formula A in Py there is a
proof P of A in Py and size(P) > p(size(Q)).

If P1 and P have the same language then the simulation is said to be
strong.
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5.3 Gentzen Sequent Calculus

v

Connectives: —, V, A

Cedent is a finite set of propositional formulas, typically denoted
with large Greek letters

v

T'— Ais a sequent if I' and A are cedents.

v

T is antcendent and A is succedent
I', A is an abbreviation of T U A

v

v

Notice similarity between — and . If one wants to think in such a way,
the meaning of ' — A is AT — \V A.
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Rules of inference

- —left: %EFILAA — — right : %ﬂrﬂgi

Vo left: RImA__ wrea

\/—right:% \/—m’ght:%
A—left: @i):yr?ﬁA A —left: q,f;;?ﬁA

A — right : FH(D’?H@NP’EH‘I}’A

cut '—d A —x P I'—A

structural : 15:2, (TCI',ACA")

The only axioms are of the form p — p, where p is a propositional
variable.
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A proof of I — A is a sequence P of sequents S1, ..., S, such that .S, is
the end sequent of I" — A.

A proof is tree-like if each sequent is used at most once as the hypothesis
of a rule. A tree-like proof T' — A is thus a tree, satisfying:

I' — A is the root
Leaves are exioms

Every node other than the root is an upper sequent of a rule

vV v v v

Every node other than a leaf is a lower sequent of a rule

A proof without the cut rule is called cut-free.

The size S(II) of derivation II = (®q, ..., ®,,) is the total number of
symbols in II. The length L(II) is n. If ® is a tautology then S(®)
(S7(®)) is S(IT), where II is the smallest proof (tree-like proof) of ®.
Similar statement holds for length L.
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Example derivation
Problem. Derive T = AV —A using LK. Clearly T is a tautology.
a=a =~ (OR)
A—A
v g (VR)

—-A,A
—AV-A,A
—AV-A,A
—aa-a = (VR)

—A,Av-A
—av-aav-a = (cut)

s AV—A, ANV A
—AV-A

=
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Summary

» Example of Frege system

Polynomial bounding for proof systems

A propositional formula can be represented as a tree
Combinatorial statements can be formalized into logical form

Basics of Gentzen Sequent Calculus

vV v.v v Yy
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