Resolution proof lower bounds for random k-SAT

T-79.7001
Postgraduate course in Theoretical Computer Science

Siert Wieringa
22.10.2007

Subject

- Proving the theoretical complexity of random k-SAT formulas for resolution
- Simplified and Improved Resolution Lower Bounds by Paul Beame and Toniann Pitassi

Table of contents

Proof idea

Definitions

Lemma's

Results

Conclusion

Proof idea

- First choose a restriction that removes all large clauses
- Argue that the restricted formula is random enough to require any proof it to contain long clauses
- Contradiction!

Sparsity (1)

Definition ($n^{\prime}-$ sparsity)
A formula \mathcal{F} is n^{\prime} - sparse if every set of $s \leq n^{\prime}$ variables contains at most s clauses of \mathcal{F}.

Sparsity (1)

Definition ($n^{\prime}-$ sparsity)
A formula \mathcal{F} is $n^{\prime}-$ sparse if every set of $s \leq n^{\prime}$ variables contains at most s clauses of \mathcal{F}.

Excuse me?

Consider the following unsatisfiable set of four clauses:

- \{1,2\}
- $\{1,-2\}$
- $\{-1,3\}$
- $\{-1,-3\}$

This formula is 2 - sparse as for every possible set of two variables from this formula there are at most two clauses that contain all variables in that set.

Sparsity (2)

Definition (($\left.n^{\prime}, n^{\prime \prime}, y\right)-$ sparsity)
A formula \mathcal{F} is $\left(n^{\prime}, n^{\prime \prime}, y\right)$ - sparse if every set of s variables, $n^{\prime}<s \leq n^{\prime \prime}$, contains at most $y s$ clauses.

Boundary set

Definition (Boundary set)
The boundary set of a set S is the set of variables that appear in only one clause of S.

Satisfiable subsets

Lemma (5.4.11)
If a CNF formula \mathcal{F} is $n^{\prime}-$ sparse then every subset of up to n^{\prime} of its clauses is satisfiable.

Satisfiable subsets

Lemma (5.4.11)
If a CNF formula \mathcal{F} is n^{\prime} - sparse then every subset of up to n^{\prime} of its clauses is satisfiable.

Proof.
Every subset S of the n^{\prime} - sparse formula \mathcal{F} with $|S| \leq n^{\prime}$ contains at least $|S|$ distinct variables and it is therefore satisfiable.

Size of boundary set

Lemma (5.4.12)

Let \mathcal{F} be a CNF formula with clause size at most k and suppose \mathcal{F} is:

$$
\left(n^{\prime} \frac{k+\epsilon}{2}, n^{\prime \prime} \frac{k+\epsilon}{2}, \frac{2}{k+\epsilon}\right)-\text { sparse. }
$$

Then every set S of size I clauses of \mathcal{F}, with $n^{\prime}<I \leq n^{\prime \prime}$ has a boundary size of at least ϵ l

Size of boundary set

Proof.

Suppose S has boundary of size less then ϵl. There are at most $k l$ variable occurences in S. So, the maximum number of different variables occuring in S must be less than:

Size of boundary set

Proof.
Suppose S has boundary of size less then ϵl. There are at most $k l$ variable occurences in S. So, the maximum number of different variables occuring in S must be less than:

$$
\epsilon l+\frac{k l-\epsilon l}{2} \leq \frac{k l}{2}+\frac{\epsilon l}{2} \leq I \frac{k+\epsilon}{2} \leq n^{\prime \prime} \frac{k+\epsilon}{2}
$$

Since each boundary variable occurs once

Size of boundary set

Proof.

Suppose S has boundary of size less then ϵl. There are at most $k l$ variable occurences in S. So, the maximum number of different variables occuring in S must be less than:

$$
\epsilon l+\frac{k l-\epsilon l}{2} \leq \frac{k l}{2}+\frac{\epsilon l}{2} \leq I \frac{k+\epsilon}{2} \leq n^{\prime \prime} \frac{k+\epsilon}{2}
$$

Since each boundary variable occurs once and every one of the remaining variables occurs at least twice.

Size of boundary set

Proof.

Suppose S has boundary of size less then ϵl. There are at most $k l$ variable occurences in S. So, the maximum number of different variables occuring in S must be less than:

$$
\epsilon l+\frac{k l-\epsilon l}{2} \leq \frac{k l}{2}+\frac{\epsilon l}{2} \leq I \frac{k+\epsilon}{2} \leq n^{\prime \prime} \frac{k+\epsilon}{2}
$$

Since each boundary variable occurs once and every one of the remaining variables occurs at least twice. This contradicts with the assumption that \mathcal{F} is:

$$
\left(n^{\prime} \frac{k+\epsilon}{2}, n^{\prime \prime} \frac{k+\epsilon}{2}, \frac{2}{k+\epsilon}\right)-\text { sparse. }
$$

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than $I \frac{k+\epsilon}{2}$ contradict with the assumption that \mathcal{F} is:

$$
\left(n^{\prime} \frac{k+\epsilon}{2}, n^{\prime \prime} \frac{k+\epsilon}{2}, \frac{2}{k+\epsilon}\right)-\text { sparse ??? }
$$

Note

Analysing this proof with the right hand side of the expression $l \frac{k+\epsilon}{2} \leq n^{\prime \prime} \frac{k+\epsilon}{2}$ leads to an incomplete result, I therefore continue with the left hand side expression.

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than $I \frac{k+\epsilon}{2}$ contradict with the assumption that \mathcal{F} is:

$$
\begin{gathered}
\left(n^{\prime} \frac{k+\epsilon}{2}, n^{\prime \prime} \frac{k+\epsilon}{2}, \frac{2}{k+\epsilon}\right)-\text { sparse ??? } \\
z=\frac{k+\epsilon}{2}
\end{gathered}
$$

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than Iz contradict with the assumption that:

$$
z=\frac{k+\epsilon}{2} \text { and } \mathcal{F} \text { is }\left(n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-\text { sparse ??? }
$$

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than Iz contradict with the assumption that:

$$
z=\frac{k+\epsilon}{2} \text { and } \mathcal{F} \text { is }\left(n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-\text { sparse ??? }
$$

Definition $\left(\left(n^{\prime}, n^{\prime \prime}, y\right)-\right.$ sparsity $)$
A formula \mathcal{F} is $\left(n^{\prime}, n^{\prime \prime}, y\right)$ - sparse if every set of s variables, $n^{\prime}<s \leq n^{\prime \prime}$, contains at most ys clauses.

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than Iz contradict with the assumption that:

$$
z=\frac{k+\epsilon}{2} \text { and } \mathcal{F} \text { is }\left(n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-\text { sparse ??? }
$$

Definition (($\left.n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-$ sparsity)
A formula \mathcal{F} is $\left(n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-$ sparse if every set of s variables, $n^{\prime} z<s \leq n^{\prime \prime} z$, contains at most $\frac{s}{z}$ clauses.

Size of boundary set

Excusé-moi?

S should contain less then Iz variables. This means that it must contain less then $\frac{I z}{z}=I$ clauses. However, S is of size I which is a contradiction.

Definition (($\left.n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)-$ sparsity)
A formula \mathcal{F} is $\left(n^{\prime} z, n^{\prime \prime} z, \frac{1}{z}\right)$ - sparse if every set of s variables, $n^{\prime} z<s \leq n^{\prime \prime} z$, contains at most $\frac{s}{z}$ clauses.

Complex clause lemma

Lemma (5.4.13)
Let $n^{\prime} \leq n$ and \mathcal{F} be an unsatisfiable $k-C N F$ formula with n variables. If \mathcal{F} is $n^{\prime}-$ sparse and:

$$
\left(n^{\prime} \frac{k+\epsilon}{4}, n^{\prime} \frac{k+\epsilon}{2}, \frac{2}{k+\epsilon}\right)-\text { sparse }
$$

then every resolution refutation of \mathcal{F} must include a clause of length at least $\frac{\epsilon n^{\prime}}{2}$

Complex clause lemma

Definition (Clause complexity)

The complexity of a clause C is the smallest number of clauses whose conjunction implies C.

Start of proof.

- The complexity of the empty clause must be $>n^{\prime}$.

Complex clause Iemma

Definition (Clause complexity)

The complexity of a clause C is the smallest number of clauses whose conjunction implies C.

Start of proof.

- The complexity of the empty clause must be $>n^{\prime}$.
- Since the complexity of the resolvent is at most the sum of the complexities of the clauses from which it is derived there must exist a clause C in the proof whose complexity is bigger then $\frac{n^{\prime}}{2}$ and at most n^{\prime}.

Complex clause lemma

Continued proof.

- Let S be a set of clauses witnessing the complexity of C with $\frac{n^{\prime}}{2}<|S| \leq n^{\prime}$.

Complex clause lemma

Continued proof.

- Let S be a set of clauses witnessing the complexity of C with $\frac{n^{\prime}}{2}<|S| \leq n^{\prime}$.
- The boundary set $b(S)$ is at least of size $\epsilon|S|>\epsilon \frac{n^{\prime}}{2}$.

Complex clause lemma

Continued proof.

- Let S be a set of clauses witnessing the complexity of C with $\frac{n^{\prime}}{2}<|S| \leq n^{\prime}$.
- The boundary set $b(S)$ is at least of size $\epsilon|S|>\epsilon \frac{n^{\prime}}{2}$.
- S implies C, and $S-\left\{C^{\prime}\right\}$ does not imply C.

Complex clause Iemma

Continued proof.

- Let S be a set of clauses witnessing the complexity of C with $\frac{n^{\prime}}{2}<|S| \leq n^{\prime}$.
- The boundary set $b(S)$ is at least of size $\epsilon|S|>\epsilon \frac{n^{\prime}}{2}$.
- S implies C, and $S-\left\{C^{\prime}\right\}$ does not imply C.
- C must contain all variables in $b(S)$ and is therefore of length $>\epsilon \frac{n^{\prime}}{2}$

Restriction effect

Lemma (5.4.14)
Let P be a resolution refutation of \mathcal{F}. The large clauses of P are those clauses mentioning more then αn distinct variables. With probability greater then $1-2^{\left(1-\frac{\alpha t}{4}\right)}|P|$, a random restriction of size t sets all large clauses to 1 .

Restriction effect

Start of proof.

- Let C be a large clause of P

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n}=\alpha t$

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n}=\alpha t$
- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n}=\alpha t$
- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$

Anteeski?

The probability that the number of variables in a clause is less then or equal to a quarter of the expected number. This includes the case where $|C \cap D|=\emptyset$.

Restriction effect

Continued proof.

- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$

Restriction effect

Continued proof.

- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$
- Given that $|C \cap D|=s$ the probability that $C\lceil p$ is not satisfied is 2^{-s}

Restriction effect

Continued proof.

- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$
- Given that $|C \cap D|=s$ the probability that $C\left\lceil_{p}\right.$ is not satisfied is 2^{-s}
- The probability that $|C \cap D|>\frac{\alpha t}{4}$ and C is not satisfied is at most $2^{-\frac{\alpha t}{4}}$

Restriction effect

Continued proof.

- $\operatorname{Pr}\left[|C \cap D| \leq \frac{\alpha t}{4}\right] \leq 2^{-\frac{\alpha t}{2}}$
- Given that $|C \cap D|=s$ the probability that $C\left\lceil_{p}\right.$ is not satisfied is 2^{-s}
- The probability that $|C \cap D|>\frac{\alpha t}{4}$ and C is not satisfied is at most $2^{-\frac{\alpha t}{4}}$
- The probability that C is not satisfied is at most:

$$
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{\left(1-\frac{\alpha t}{4}\right)}
$$

Restriction effect

Entschuldigen Sie bitte!

$$
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{\left(1-\frac{\alpha t}{4}\right)}
$$

Restriction effect

Entschuldigen Sie bitte!

$$
\begin{gathered}
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{\left(1-\frac{\alpha t}{4}\right)} \\
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{-\frac{\alpha t}{4}}+2^{-\frac{\alpha t}{4}}
\end{gathered}
$$

Restriction effect

Entschuldigen Sie bitte!

$$
\begin{gathered}
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{\left(1-\frac{\alpha t}{4}\right)} \\
2^{-\frac{\alpha t}{2}}+2^{-\frac{\alpha t}{4}}<2^{-\frac{\alpha t}{4}}+2^{-\frac{\alpha t}{4}} \\
2^{-\frac{\alpha t}{4}}+2^{-\frac{\alpha t}{4}}=2^{1} * 2^{-\frac{\alpha t}{4}}=2^{\left(1-\frac{\alpha t}{4}\right)}
\end{gathered}
$$

Restriction effect

Lemma (5.4.14)
Let P be a resolution refutation of \mathcal{F}. The large clauses of P are those clauses mentioning more then an distinct variables. With probability greater then $1-2^{\left(1-\frac{\alpha t}{4}\right)}|P|$, a random restriction of size t sets all large clauses to 1 .

Restriction effect

Lemma (5.4.14)
Let P be a resolution refutation of \mathcal{F}. The large clauses of P are those clauses mentioning more then an distinct variables. With probability greater then $1-2^{\left(1-\frac{\alpha t}{4}\right)}|P|$, a random restriction of size t sets all large clauses to 1 .

Proof.

- The probability that a clause C in P is not satisfied is at most $2^{\left(1-\frac{\alpha t}{4}\right)}$
- The probability that a clause is satisfied is therefore at least $1-2^{\left(1-\frac{\alpha t}{4}\right)}$
- The probability that all clauses are satisfied is therefore at least $1-2^{\left(1-\frac{\alpha t}{4}\right)}|P|$

Probability of sparsity

Lemma (5.4.15)
Let x, y, z be such that $x \leq 1, \frac{1}{k-1}<y \leq 1,2^{\frac{1}{k}} \leq z$, and let ρ be any restriction of size t variables with
$t \leq \min \left\{\frac{x n}{2}, \frac{x^{\left(1-\frac{1+1 / y}{k}\right)} n^{1-2 / k}}{z}\right\}$.

If \mathcal{F} is chosen as a random $k-$ CNF formula with at most $\frac{y}{e^{1+1 / y 2^{k+1 / y}}} x^{1 / y-(k-1)} n$ clauses then:
$\operatorname{Pr}\left[\mathcal{F}\left\lceil_{p}\right.\right.$ is both $x n-$ and $\left(\frac{x n}{2}, x n, y\right)-$ sparse $] \geq 1-2^{-t}-2 z^{-k}-\frac{1}{n}$

What is the general idea?

- Basically, with large probability after applying this type of refutation ρ the random $k-C N F$ formula still has a certain sparsity.

What is the general idea?

- Basically, with large probability after applying this type of refutation ρ the random $k-C N F$ formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.

What is the general idea?

- Basically, with large probability after applying this type of refutation ρ the random $k-C N F$ formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.
- The refutation ρ removed all long clauses from the formula.

What is the general idea?

- Basically, with large probability after applying this type of refutation ρ the random $k-C N F$ formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.
- The refutation ρ removed all long clauses from the formula.
- Contradiction!

The result

- Exponential size proofs are required for random $k-C N F$ formulas with $m \leq n^{(k-1) / 4}$.

Conclusion

- Proving that refutations for random $k-C N F$ formulas are of exponential size is far from trivial.
- We have seen some definitions and lemma's that helped us get the general idea behind the proof.
- And as an analogue to Petri's conclusion:

Conclusion

- Proving that refutations for random $k-C N F$ formulas are of exponential size is far from trivial.
- We have seen some definitions and lemma's that helped us get the general idea behind the proof.
- And as an analogue to Petri's conclusion:

Bravery and stupidity are closely related.

