Proof idea	Definitions	Lemma's	Results	Conclusion
	00	0		
	0	0000000		
		000		
		00000		
		00		

Resolution proof lower bounds for random k-SAT

T-79.7001 Postgraduate course in Theoretical Computer Science

Siert Wieringa

22.10.2007

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Proving the theoretical complexity of random k-SAT formulas for resolution

• Simplified and Improved Resolution Lower Bounds by Paul Beame and Toniann Pitassi

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof idea

00 0 Lemma's 0 00000000 000 00000 Results

Conclusion

Table of contents

Proof idea

Definitions

Lemma's

Results

Conclusion

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Proof idea	Definitions	Lemma's	Results	Conclusion
	00	0 000000000 000 00000 00		

- First choose a restriction that removes all large clauses
- Argue that the restricted formula is random enough to require any proof it to contain long clauses

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Contradiction!

Sparsity (1)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition (n' - sparsity)

A formula \mathcal{F} is n' - sparse if every set of $s \leq n'$ variables contains at most *s* clauses of \mathcal{F} .

Sparsity (1)

Definition (n' - sparsity)

A formula \mathcal{F} is n' - sparse if every set of $s \leq n'$ variables contains at most *s* clauses of \mathcal{F} .

Excuse me?

Consider the following unsatisfiable set of four clauses:

- { 1, 2 }
- { 1, -2 }
- { -1, 3 }
- { -1, -3 }

This formula is 2 – sparse as for every possible set of two variables from this formula there are at most two clauses that contain all variables in that set.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition ((n', n'', y) - sparsity)

A formula \mathcal{F} is (n', n'', y) - sparse if every set of *s* variables, $n' < s \le n''$, contains at most *ys* clauses.

Boundary set

Definition (Boundary set)

The boundary set of a set S is the set of variables that appear in only one clause of S.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Satisfiable subsets

Lemma (5.4.11)

If a CNF formula \mathcal{F} is n' – sparse then every subset of up to n' of its clauses is satisfiable.

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Satisfiable subsets

Lemma (5.4.11)

If a CNF formula \mathcal{F} is n' – sparse then every subset of up to n' of its clauses is satisfiable.

Proof.

Every subset *S* of the n' - sparse formula \mathcal{F} with $|S| \leq n'$ contains at least |S| distinct variables and it is therefore satisfiable.

Lemma's

Results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Size of boundary set

Lemma (5.4.12)

Let \mathcal{F} be a CNF formula with clause size at most k and suppose \mathcal{F} is:

$$(n'\frac{k+\epsilon}{2},n''\frac{k+\epsilon}{2},\frac{2}{k+\epsilon})-$$
sparse.

Then every set S of size I clauses of \mathcal{F} , with $n' < I \le n''$ has a boundary size of at least ϵI

Proof idea

Definition 00 Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Proof.

Suppose *S* has boundary of size less then ϵl . There are at most *kl* variable occurences in *S*. So, the maximum number of different variables occuring in *S* must be less than:

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Proof.

Suppose *S* has boundary of size less then ϵI . There are at most *kI* variable occurences in *S*. So, the maximum number of different variables occuring in *S* must be less than:

$$\epsilon l + \frac{kl - \epsilon l}{2} \le \frac{kl}{2} + \frac{\epsilon l}{2} \le l \frac{k + \epsilon}{2} \le n'' \frac{k + \epsilon}{2}$$

Since each boundary variable occurs once

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Proof.

Suppose *S* has boundary of size less then ϵI . There are at most *kI* variable occurences in *S*. So, the maximum number of different variables occuring in *S* must be less than:

$$\epsilon l + \frac{kl - \epsilon l}{2} \le \frac{kl}{2} + \frac{\epsilon l}{2} \le l \frac{k + \epsilon}{2} \le n'' \frac{k + \epsilon}{2}$$

Since each boundary variable occurs once and every one of the remaining variables occurs at least twice.

Lemma's

Results

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Size of boundary set

Proof.

Suppose *S* has boundary of size less then ϵI . There are at most *kI* variable occurences in *S*. So, the maximum number of different variables occuring in *S* must be less than:

$$\epsilon l + rac{kl - \epsilon l}{2} \le rac{kl}{2} + rac{\epsilon l}{2} \le lrac{k + \epsilon}{2} \le n''rac{k + \epsilon}{2}$$

Since each boundary variable occurs once and every one of the remaining variables occurs at least twice. This contradicts with the assumption that \mathcal{F} is:

$$(n'\frac{k+\epsilon}{2},n''\frac{k+\epsilon}{2},\frac{2}{k+\epsilon})-$$
sparse.

Lemma's

Results

(ロ) (同) (三) (三) (三) (○) (○)

Conclusion

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than $I^{\frac{k+\epsilon}{2}}$ contradict with the assumption that \mathcal{F} is:

$$(n'\frac{k+\epsilon}{2},n''\frac{k+\epsilon}{2},\frac{2}{k+\epsilon})$$
 – sparse ???

Note

Analysing this proof with the right hand side of the expression $l\frac{k+\epsilon}{2} \leq n''\frac{k+\epsilon}{2}$ leads to an incomplete result, I therefore continue with the left hand side expression.

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than $I^{\frac{k+\epsilon}{2}}$ contradict with the assumption that \mathcal{F} is:

$$(n'\frac{k+\epsilon}{2},n''\frac{k+\epsilon}{2},\frac{2}{k+\epsilon})$$
 – sparse ???

$$z = \frac{k + \epsilon}{2}$$

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in *S* must be less than *lz* contradict with the assumption that:

$$z = \frac{k + \epsilon}{2}$$
 and \mathcal{F} is $(n'z, n''z, \frac{1}{z})$ – sparse ???

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than Iz contradict with the assumption that:

$$z = \frac{k + \epsilon}{2}$$
 and \mathcal{F} is $(n'z, n''z, \frac{1}{z})$ – sparse ???

Definition ((n', n'', y) - sparsity)

A formula \mathcal{F} is (n', n'', y) - sparse if every set of s variables, $n' < s \le n''$, contains at most ys clauses.

Lemma's

Results

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusion

Size of boundary set

Excusé-moi?

Why does the maximum number of different variables occuring in S must be less than Iz contradict with the assumption that:

$$z = \frac{k + \epsilon}{2}$$
 and \mathcal{F} is $(n'z, n''z, \frac{1}{z})$ – sparse ???

Definition $((n'z, n''z, \frac{1}{z}) - sparsity)$

A formula \mathcal{F} is $(n'z, n''z, \frac{1}{z}) - sparse$ if every set of s variables, $n'z < s \le n''z$, contains at most $\frac{s}{z}$ clauses.

Lemma's 0 00000000 000 00000

Results

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Size of boundary set

Excusé-moi?

S should contain less then *Iz* variables. This means that it must contain less then $\frac{Iz}{z} = I$ clauses. However, *S* is of size *I* which is a contradiction.

Definition $((n'z, n''z, \frac{1}{z}) - sparsity)$

A formula \mathcal{F} is $(n'z, n''z, \frac{1}{z}) - sparse$ if every set of s variables, $n'z < s \le n''z$, contains at most $\frac{s}{z}$ clauses.

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Complex clause lemma

Lemma (5.4.13)

Let $n' \leq n$ and \mathcal{F} be an unsatisfiable k - CNF formula with n variables. If \mathcal{F} is n' - sparse and:

$$(n'\frac{k+\epsilon}{4},n'\frac{k+\epsilon}{2},\frac{2}{k+\epsilon})-$$
sparse

then every resolution refutation of ${\mathcal F}$ must include a clause of length at least $\frac{\epsilon n'}{2}$

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Complex clause lemma

Definition (Clause complexity)

The complexity of a clause C is the smallest number of clauses whose conjunction implies C.

Start of proof.

• The complexity of the empty clause must be > n'.

Lemma's

Results

Conclusion

Complex clause lemma

Definition (Clause complexity)

The complexity of a clause C is the smallest number of clauses whose conjunction implies C.

Start of proof.

- The complexity of the empty clause must be > n'.
- Since the complexity of the resolvent is at most the sum of the complexities of the clauses from which it is derived there must exist a clause C in the proof whose complexity is bigger then ^{n'}/₂ and at most n'.

Lemma's

Results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Complex clause lemma

Continued proof.

• Let *S* be a set of clauses witnessing the complexity of *C* with $\frac{n'}{2} < |S| \le n'$.

Lemma's

Results

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusion

Complex clause lemma

- Let S be a set of clauses witnessing the complexity of C with ^{n'}/₂ < |S| ≤ n'.
- The boundary set b(S) is at least of size $\epsilon |S| > \epsilon \frac{n'}{2}$.

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Complex clause lemma

- Let S be a set of clauses witnessing the complexity of C with ^{n'}/₂ < |S| ≤ n'.
- The boundary set b(S) is at least of size $\epsilon |S| > \epsilon \frac{n'}{2}$.
- *S* implies *C*, and $S \{C'\}$ does not imply *C*.

Lemma's

Results

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Complex clause lemma

- Let S be a set of clauses witnessing the complexity of C with ^{n'}/₂ < |S| ≤ n'.
- The boundary set b(S) is at least of size $\epsilon |S| > \epsilon \frac{n'}{2}$.
- S implies C, and $S \{C'\}$ does not imply C.
- *C* must contain all variables in b(S) and is therefore of length $> \epsilon \frac{n'}{2}$

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

Lemma (5.4.14)

Let P be a resolution refutation of \mathcal{F} . The large clauses of P are those clauses mentioning more then αn distinct variables. With probability greater then $1 - 2^{(1-\frac{\alpha t}{4})}|P|$, a random restriction of size t sets all large clauses to 1.

Lemma's

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Restriction effect

Start of proof.

• Let C be a large clause of P

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n} = \alpha t$

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n} = \alpha t$

•
$$\Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$$

Lemma's

Results

Conclusion

Restriction effect

Start of proof.

- Let C be a large clause of P
- Expected number of variables assigned a value by random restriction of size t is $\alpha n \frac{t}{n} = \alpha t$
- $\Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$

Anteeski?

The probability that the number of variables in a clause is less then or equal to a quarter of the expected number. This includes the case where $|C \cap D| = \emptyset$.

Lemma's

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusion

Restriction effect

Continued proof.

• $Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$

Lemma's

Results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Restriction effect

- $\Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$
- Given that |C ∩ D| = s the probability that C[p is not satisfied is 2^{-s}

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

- $\Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$
- Given that |C ∩ D| = s the probability that C[p is not satisfied is 2^{-s}
- The probability that |C ∩ D| > ^{αt}/₄ and C is not satisfied is at most 2^{-^{αt}/₄}

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

Continued proof.

- $\Pr[|C \cap D| \leq \frac{\alpha t}{4}] \leq 2^{-\frac{\alpha t}{2}}$
- Given that |C ∩ D| = s the probability that C[p is not satisfied is 2^{-s}
- The probability that |C ∩ D| > ^{αt}/₄ and C is not satisfied is at most 2^{-^{αt}/₄}
- The probability that C is not satisfied is at most:

$$2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{(1-\frac{\alpha t}{4})}$$

P	1			£	Ы		2	
	1	U	U	1	u	0	a	

Lemma's

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Restriction effect

Entschuldigen Sie bitte!

$$2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{(1-\frac{\alpha t}{4})}$$

Lemma's

Results

Conclusion

Restriction effect

Entschuldigen Sie bitte!

$$2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{(1-\frac{\alpha t}{4})}$$
$$2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{-\frac{\alpha t}{4}} + 2^{-\frac{\alpha t}{4}}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Lemma's

Results

Conclusion

Restriction effect

Entschuldigen Sie bitte!

- $2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{(1-\frac{\alpha t}{4})}$ $2^{-\frac{\alpha t}{2}} + 2^{-\frac{\alpha t}{4}} < 2^{-\frac{\alpha t}{4}} + 2^{-\frac{\alpha t}{4}}$
- $2^{-\frac{\alpha t}{4}} + 2^{-\frac{\alpha t}{4}} = 2^{1} * 2^{-\frac{\alpha t}{4}} = 2^{(1-\frac{\alpha t}{4})}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Lemma's

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Restriction effect

Lemma (5.4.14)

Let P be a resolution refutation of \mathcal{F} . The large clauses of P are those clauses mentioning more then αn distinct variables. With probability greater then $1 - 2^{(1-\frac{\alpha t}{4})}|P|$, a random restriction of size t sets all large clauses to 1.

Lemma's

Results

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Restriction effect

Lemma (5.4.14)

Let P be a resolution refutation of \mathcal{F} . The large clauses of P are those clauses mentioning more then αn distinct variables. With probability greater then $1 - 2^{(1-\frac{\alpha t}{4})}|P|$, a random restriction of size t sets all large clauses to 1.

Proof.

- The probability that a clause C in P is not satisfied is at most 2^(1-at)
- The probability that a clause is satisfied is therefore at least $1-2^{(1-\frac{\alpha t}{4})}$
- The probability that all clauses are satisfied is therefore at least $1 2^{(1 \frac{\alpha \ell}{4})} |P|$

Lemma's

Results

Conclusion

Probability of sparsity

Lemma (5.4.15)

Let *x*, *y*, *z* be such that $x \le 1, \frac{1}{k-1} < y \le 1, 2^{\frac{1}{k}} \le z$, and let ρ be any restriction of size *t* variables with $t \le \min\{\frac{xn}{2}, \frac{x^{(1-\frac{1+1/y}{k})n^{1-2/k}}}{z}\}.$

If \mathcal{F} is chosen as a random k - CNF formula with at most $\frac{y}{e^{1+1/y}2^{k+1/y}}x^{1/y-(k-1)}n$ clauses then:

$$Pr[\mathcal{F}\lceil_p \text{ is both } xn - and (\frac{xn}{2}, xn, y) - sparse] \ge 1 - 2^{-t} - 2z^{-k} - \frac{1}{n}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

 Basically, with large probability after applying this type of refutation *ρ* the random *k* – *CNF* formula still has a certain sparsity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Basically, with large probability after applying this type of refutation *ρ* the random *k* – *CNF* formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Basically, with large probability after applying this type of refutation *ρ* the random *k* – *CNF* formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.
- The refutation ρ removed all long clauses from the formula.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Basically, with large probability after applying this type of refutation *ρ* the random *k* – *CNF* formula still has a certain sparsity.
- By the complex clause lemma each resolution refutation for a formula with that sparsity must contain a long clause.
- The refutation ρ removed all long clauses from the formula.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contradiction!

Proof idea	Definitions	Lemma's	Results	Conclusion
	00	0 00000000 000 00000 00		

The result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Exponential size proofs are required for random *k* − *CNF* formulas with *m* ≤ *n*^{(*k*−1)/4}.

Proof idea	Definitions	Lemma's	Results	Conclusion
	00	00000000		
		000 00000 00		
		00		

- Proving that refutations for random *k CNF* formulas are of exponential size is far from trivial.
- We have seen some definitions and lemma's that helped us get the general idea behind the proof.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• And as an analogue to Petri's conclusion:

Proof idea	Definitions	Lemma's	Results	Conclusion
	õ			

Conclusion

- Proving that refutations for random *k CNF* formulas are of exponential size is far from trivial.
- We have seen some definitions and lemma's that helped us get the general idea behind the proof.
- And as an analogue to Petri's conclusion:

Bravery and stupidity are closely related.

(ロ) (同) (三) (三) (三) (三) (○) (○)