Propositional Proof Systems (p. 348-359)

Petri Savola

Laboratory for Theoretical Computer Science, TKK

19.11.2007

э

イロト 不得下 イヨト イヨト

Outline

- Basics of cutting planes
- Cutting planes and PHP
- \blacktriangleright Polynomial size refutation for generalized version of PHP
- ► Special case of cutting planes: CP_q
- Proof that CP_q p-simulates CP
- ▶ Normal form for *CP* proofs
- Summary

э

イロト イポト イヨト イヨト

Cutting planes (basics)

- Take negation of the tautology which needs to be proved.
- ► Transform the formula into CNF form.
- Then for each clausule write an inequality.
- Derive a contradiction using axioms, rules of inference and the inequalities.

- 4 E b - 4 E b

- Given positive integers m and k, if there is a function $f : \{0, ..., mk\} \rightarrow \{0, ..., k-1\}$ then there is j < k for which $f^{-1}(j)$ has size greater than m.
- Note that PHP_k^{k+1} is a special case of this (m = 1).
- ▶ Denote the set of size n subsets of {0, ..., m 1} by [m]ⁿ. Then Degen's generalization can be expressed the following way

$$\bigwedge_{0 \le i \le mk} \bigvee_{0 \le j < k} p_{i,j} \to \bigvee_{0 \le j < k} \bigvee_{I \in [mk+1]^{m+1}} \bigwedge_{i \in I} p_{i,j}$$
(1)

イロト 不得 とくほと くほとう ほ

Denote formula (1) by $D_{m,k}$. Clearly $\neg D_{m,k}$ is a CNF-formula, so for each of its clausules we can write CP-inequalities. We obtain

•
$$\sum_{j=0}^{k-1} p_{i,j} \ge 1$$
 for $0 \le i \le mk$

▶
$$-p_{i_1,j} - p_{i_2,j} - \dots - p_{i_{m+1},j} \ge -m$$
 for $0 \le j < k$ and $0 \le i_1 < i_2 < \dots < i_{m+1} \le mk$.

- Total number of $mk + 1 + \binom{mk+1}{m+1}k$ inequalities.
- Let $E_{m,k}$ denote these inequalities.

・ロト ・四ト ・ヨト ・ヨトー

Theorem 5.6.3 There are $\mathcal{O}(k^5)$ size CP refutations of $E_{2,k}$. *Proof.* For all $0 \le i_1 < i_2 < i_3 \le 2k$ and all $0 \le r < k$ we have $2 \ge p_{i_1,r} + p_{i_2,r} + p_{i_3,r}$.

- Hence also $2 \ge p_{i_1,r} + p_{i_2,r} + p_{i_2+1,r}$ holds.
- ▶ By applying Claim 2 we obtain (after applying it 2k 3 times) $2 \ge p_{0,r} + ... + p_{2k,r}$ for each $0 \le r < k$.
- ▶ We can sum up all these k inequalities to obtain $2k \ge \sum_{i=0}^{2k} \sum_{j=0}^{k-1} p_{i,j}$.
- But we also have $\sum_{j=0}^{k-1} p_{i,j} \ge 1$ for each $0 \le i \le 2k$.
- ▶ By summing these up we get $\sum_{i=0}^{2k} \sum_{j=0}^{k-1} p_{i,j} \ge 2k+1$ which leads into the contradiction $2k \ge 2k+1$.

The book claims the proof size is $\mathcal{O}(k^5)$.

Claim 2

Assume that $3 \leq s \leq 2k$ and for all $0 \leq i_1 < ... < i_s \leq 2k$ such that $i_2, ..., i_s$ are consecutive, and for all $0 \leq r < k$, it is the case that $2 \geq p_{i_1,r} + ... + p_{i_s,r}$. Then for all $0 \leq i_1 < ... < i_{s+1} \leq 2k$ such that $i_2, ..., i_{s+1}$ are consecutive, and for all $0 \leq r < k$, it is the case that $2 \geq p_{i_1,r} + ... + p_{i_{s+1},r}$. Proof of Claim 2

The following inequalities hold

$$\begin{array}{l} \bullet \ 2 \geq p_{i_1,r} + \ldots + p_{i_s,r} \\ \bullet \ 2 \geq p_{i_2,r} + \ldots + p_{i_{s+1},r} \\ \bullet \ 2 \geq p_{i_1,r} + p_{i_3,r} + \ldots + p_{i_{s+1},r} \end{array}$$

▶ $2 \ge p_{i_1,r} + p_{i_2,r} + p_{i_{s+1},r}$

Summing them up we obtain $8 \ge 3p_{i_1,r} + \ldots + 3p_{i_{s+1},r}$ Division by 3 yields $2 = \lfloor \frac{8}{3} \rfloor \ge p_{i_1,r} + \ldots + p_{i_{s+1},r}$, which completes the proof.

Theorem 5.6.4

Let $m \geq 2$ and n = mk + 1. Then there are $\mathcal{O}(n^{m+3})$ size CP refutations of $E_{m,k}$, where the constant in the \mathcal{O} -notation depends on m, and $\mathcal{O}(n^{m+4})$ size CP refutations, where the constant is independent of n, m. *Proof.* Generalization of Theorem 5.6.3. (details omitted)

・ロト ・聞ト ・ヨト ・ヨトー

Polynomial equivalence of CP₂ and CP

Example

- ▶ $9x + 12y \ge 11$ (1)
- ▶ $3(3x) + 3(4y) \ge 11$ (2)
- $x \ge 0 \rightarrow 3x \ge 0$ (3)
- ▶ $y \ge 0 \rightarrow 4y \ge 0$ (4)
- $(3+1)(3x) + (3+1)(4y) = 2^2(3x) + 2^2(4y) \ge 11$ (5)
- ▶ $3x + 4y \ge \lfloor \frac{11}{2^2} \rfloor = 2$ (6)

• (6) + (2)
$$\Rightarrow 4(3x) + 4(4y) \ge 13$$
 (7)

▶ $3x + 4y \ge 3$ (8)

We get the inequality (8) which we would obtain by dividing inequality (1) by three using only division by 2. CP_q means that only division by q is allowed.

イロト 不得下 不良下 不良下 一度

Polynomial equivalence of CP_q and CP

Theorem 5.6.5

Let q > 1. Then CP_q p-simulates CP.

Proof. Suppose a cutting plane proof contains a division inference $c\alpha \ge M \rightsquigarrow \alpha \ge \lceil M/c \rceil$. This can be p-simulated by only using division by q. For this we generate a sequence $s_0 \le s_1 \le ... \le \lceil M/c \rceil$ such that from $\alpha \ge s_i$ and $ca \ge M$ one can obtain $\alpha \ge s_{i+1}$.

Choose p so that $q^{p-1} < c \leq q^p$. We can assume that $q^p/2 < c$, because otherwise we can multiply the original inequality with m and then $q^p/2 < mc \leq q^p$ would hold.

 $\alpha = \sum_{i=1}^{n} a_i x_i$. Let s_0 be the sum of negative coefficients of α . Because $x_i \ge 0$ and $x_i \le 1$ we can easily derive $\alpha \ge s_0$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Proof continued

Define
$$s_{i+1} = \lceil \frac{(q^p - c)s_i + M}{q^p} \rceil$$
. (details about this later)
• $c\alpha \ge M$ (1)
• $c\alpha + q^p \alpha \ge q^p \alpha + M$ (2)
• $q^p \alpha \ge (q^p - c)\alpha + M$ (3)
• $\alpha \ge s_i$ (4)
• $(q^p - c)\alpha \ge (q^p - c)s_i$ (5)
• (5) + (3) $\Rightarrow q^p \alpha \ge (q^p - c)s_i + M$ (6)
• $\alpha \ge \lceil \frac{(q^p - c)s_i + M}{q^p} \rceil = s_{i+1}$ (7)

Generation of the sequence

►
$$s = M/c$$

► $cs = M$
► $cs + sq^p = sq^p + M$
► $sq^p = (q^p - c)s + M$
► $s = \frac{q^p - c)s + M}{q^p} = f(s)$

Then, $s_{n+1} = f(s_n)$.

- $\blacktriangleright \ (q^p-c)/q^p = 1-c/q^p < 1, \ \text{because} \ c \leq q^p.$
- Thus |f'(s)| < 1 always, so the iteration converges into M/c.
- ▶ Also, this function has the property $s \ge f(s) \Leftrightarrow s \ge (1 - c/q^p)s + M/q^p \Leftrightarrow cs/q^p \ge M/q^p \Leftrightarrow cs \ge M$ which trivially holds, because cs = M.

Then, $s_0 \leq s_1 \leq \ldots \leq s_i \leq M/c$.

イロト 不得 とくほと くほとう ほ

Convergence of the sequence

We have now proved that given $c\alpha \geq M$ and $\alpha \geq s_0$ we can inductively prove $\alpha \geq s_i$. And also s_i converges into $\lceil M/c \rceil$, so eventually we can prove $\alpha \geq \lceil M/c \rceil$ using only division by q. We still need to prove that the convergence is fast.

Denote $a = (q^p - c)/q^p$ and $b = M/q^p$. Then $1 - a = c/q^p$.

▶
$$s_1 \ge as_0 + b$$

▶ $s_2 \ge as_1 + b \ge a(as_0 + b) + b$
▶ ...
▶ $s_j \ge b \sum_{i=0}^{j-1} a + a^j s_0 = b(1 - a^j)/(1 - a) + a^j s_0 = b/(1 - a) - a^j(b/(1 - a) - s_0) = M/c - a^j(M/c - s_0)$

So, if $a^j(M/c - s_0) < 1$ we can see that the difference between s_j and M/c is less than one. Therefore we need at most j + 1 steps to prove $\alpha \ge \lceil M/c \rceil$.

 $c > q^p/2 \Rightarrow (q^p - c) < q^p/2 \Rightarrow a < 1/2$. Thus, $a^j(M/c - s_0) < 1$ holds if $(1/2)^j(M/c - s_0) < 1$ holds. By solving j we obtain $j > log_2(M/c - s_0)$ which completes the proof.

Normal Form for CP Proofs

Let $\Sigma = \{I_1, ..., I_p\}$ be an unsatisfiable set of linear inequalities, and suppose that absolute value of every coefficient and constant term in each inequality of Σ is bounded by B. Let A = pB.

Theorem 5.6.6

Let P be a CP refutation of Σ having l lines. Then there is a CP refutation P' of Σ , such that P' has $\mathcal{O}(l^3 log(A))$ lines and such that each coefficient and constant term appearing in P' has absolute value equal to $\mathcal{O}(l2^lA)$.

Proof. Long and hard to understand.

Corollary 5.6.2

Let Σ be an unsatisfiable set of linear inequalities, and let n denote the size $|\Sigma|$. If P is a CP refutation of Σ having l lines, then there is a CP refutation P' of Σ , such that P' has $\mathcal{O}(l^3log(n))$ lines and such that the size of the absolute value of each coefficient and constant term appearing in P' is $\mathcal{O}(l + log(n))$.

Summary

We should have learned today that...

- There is polynomial size CP proof for generalized version of PHP
- CP p-simulates CP_q and CP_q p-simulates CP so they are polynomially equivalent.
- The size of coefficients in a CP refutation depends polynomially on the length of the refutation and the size of the CNF formula.

< ロ > < 同 > < 回 > < 回 > < 回 > <