Propositional Proof Systems (p. 348-359)

Petri Savola
Laboratory for Theoretical Computer Science, TKK

19.11.2007

Outline

- Basics of cutting planes
- Cutting planes and PHP
- Polynomial size refutation for generalized version of $P H P$
- Special case of cutting planes: $C P_{q}$
- Proof that $C P_{q}$ p-simulates $C P$
- Normal form for $C P$ proofs
- Summary

Cutting planes (basics)

- Take negation of the tautology which needs to be proved.
- Transform the formula into CNF form.
- Then for each clausule write an inequality.
- Derive a contradiction using axioms, rules of inference and the inequalities.

Degen's generalization of PHP

- Given positive integers m and k, if there is a function $f:\{0, \ldots, m k\} \rightarrow\{0, \ldots, k-1\}$ then there is $j<k$ for which $f^{-1}(j)$ has size greater than m.
- Note that $P H P_{k}^{k+1}$ is a special case of this $(m=1)$.
- Denote the set of size n subsets of $\{0, \ldots, m-1\}$ by $[m]^{n}$. Then Degen's generalization can be expressed the following way

$$
\begin{equation*}
\bigwedge_{0 \leq i \leq m k} \bigvee_{0 \leq j<k} p_{i, j} \rightarrow \bigvee_{0 \leq j<k} \bigvee_{I \in[m k+1]^{m+1}} \bigwedge_{i \in I} p_{i, j} \tag{1}
\end{equation*}
$$

Degen's generalization of PHP

Denote formula (1) by $D_{m, k}$. Clearly $\neg D_{m, k}$ is a CNF-formula, so for each of its clausules we can write CP-inequalities. We obtain

- $\sum_{j=0}^{k-1} p_{i, j} \geq 1$ for $0 \leq i \leq m k$
- $-p_{i_{1}, j}-p_{i_{2}, j}-\ldots-p_{i_{m+1}, j} \geq-m$ for $0 \leq j<k$ and $0 \leq i_{1}<i_{2}<\ldots<i_{m+1} \leq m k$.
- Total number of $m k+1+\binom{m k+1}{m+1} k$ inequalities.
- Let $E_{m, k}$ denote these inequalities.

Degen's generalization of PHP

Theorem 5.6.3
There are $\mathcal{O}\left(k^{5}\right)$ size CP refutations of $E_{2, k}$.
Proof. For all $0 \leq i_{1}<i_{2}<i_{3} \leq 2 k$ and all $0 \leq r<k$ we have $2 \geq p_{i_{1}, r}+p_{i_{2}, r}+p_{i_{3}, r}$.

- Hence also $2 \geq p_{i_{1}, r}+p_{i_{2}, r}+p_{i_{2}+1, r}$ holds.
- By applying Claim 2 we obtain (after applying it $2 k-3$ times) $2 \geq p_{0, r}+\ldots+p_{2 k, r}$ for each $0 \leq r<k$.
- We can sum up all these k inequalities to obtain $2 k \geq \sum_{i=0}^{2 k} \sum_{j=0}^{k-1} p_{i, j}$.
- But we also have $\sum_{j=0}^{k-1} p_{i, j} \geq 1$ for each $0 \leq i \leq 2 k$.
- By summing these up we get $\sum_{i=0}^{2 k} \sum_{j=0}^{k-1} p_{i, j} \geq 2 k+1$ which leads into the contradiction $2 k \geq 2 k+1$.

The book claims the proof size is $\mathcal{O}\left(k^{5}\right)$.

Degen's generalization of PHP

Claim 2
Assume that $3 \leq s \leq 2 k$ and for all $0 \leq i_{1}<\ldots<i_{s} \leq 2 k$ such that i_{2}, \ldots, i_{s} are consecutive, and for all $0 \leq r<k$, it is the case that
$2 \geq p_{i_{1}, r}+\ldots+p_{i_{s}, r}$.
Then for all $0 \leq i_{1}<\ldots<i_{s+1} \leq 2 k$ such that i_{2}, \ldots, i_{s+1} are consecutive, and for all $0 \leq r<k$, it is the case that
$2 \geq p_{i_{1}, r}+\ldots+p_{i_{s+1}, r}$.
Proof of Claim 2
The following inequalities hold

- $2 \geq p_{i_{1}, r}+\ldots+p_{i_{s}, r}$
- $2 \geq p_{i_{2}, r}+\ldots+p_{i_{s+1}, r}$
- $2 \geq p_{i_{1}, r}+p_{i_{3}, r}+\ldots+p_{i_{s+1}, r}$
- $2 \geq p_{i_{1}, r}+p_{i_{2}, r}+p_{i_{s+1}, r}$

Summing them up we obtain $8 \geq 3 p_{i_{1}, r}+\ldots+3 p_{i_{s+1}, r}$ Division by 3 yields $2=\left\lfloor\frac{8}{3}\right\rfloor \geq p_{i_{1}, r}+\ldots+p_{i_{s+1}, r}$, which completes the proof.

Degen's generalization of PHP

Theorem 5.6.4
Let $m \geq 2$ and $n=m k+1$. Then there are $\mathcal{O}\left(n^{m+3}\right)$ size CP refutations of $E_{m, k}$, where the constant in the \mathcal{O}-notation depends on m, and $\mathcal{O}\left(n^{m+4}\right)$ size CP refutations, where the constant is independent of n, m. Proof. Generalization of Theorem 5.6.3. (details omitted)

Polynomial equivalence of CP_{2} and CP

Example

- $9 x+12 y \geq 11$ (1)
- $3(3 x)+3(4 y) \geq 11$ (2)
- $x \geq 0 \rightarrow 3 x \geq 0$ (3)
- $y \geq 0 \rightarrow 4 y \geq 0$ (4)
- $(3+1)(3 x)+(3+1)(4 y)=2^{2}(3 x)+2^{2}(4 y) \geq 11$ (5)
- $3 x+4 y \geq\left\lfloor\frac{11}{2^{2}}\right\rfloor=2$ (6)
- $(6)+(2) \Rightarrow 4(3 x)+4(4 y) \geq 13$ (7)
- $3 x+4 y \geq 3$ (8)

We get the inequality (8) which we would obtain by dividing inequality (1) by three using only division by $2 . \mathrm{CP}_{q}$ means that only division by q is allowed.

Polynomial equivalence of CP_{q} and CP

Theorem 5.6.5
Let $q>1$. Then CP_{q} p-simulates CP .
Proof. Suppose a cutting plane proof contains a division inference $c \alpha \geq M \rightsquigarrow \alpha \geq\lceil M / c\rceil$. This can be p-simulated by only using division
by q. For this we generate a sequence $s_{0} \leq s_{1} \leq \ldots \leq\lceil M / c\rceil$ such that from $\alpha \geq s_{i}$ and $c a \geq M$ one can obtain $\alpha \geq s_{i+1}$.
Choose p so that $q^{p-1}<c \leq q^{p}$. We can assume that $q^{p} / 2<c$, because otherwise we can multiply the original inequality with m and then $q^{p} / 2<m c \leq q^{p}$ would hold.
$\alpha=\sum_{i=1}^{n} a_{i} x_{i}$. Let s_{0} be the sum of negative coefficients of α. Because $x_{i} \geq 0$ and $x_{i} \leq 1$ we can easily derive $\alpha \geq s_{0}$.

Proof continued

Define $s_{i+1}=\left\lceil\frac{\left(q^{p}-c\right) s_{i}+M}{q^{p}}\right\rceil$. (details about this later)

- $c \alpha \geq M$ (1)
- $c \alpha+q^{p} \alpha \geq q^{p} \alpha+M$ (2)
- $q^{p} \alpha \geq\left(q^{p}-c\right) \alpha+M$ (3)
- $\alpha \geq s_{i}$ (4)
- $\left(q^{p}-c\right) \alpha \geq\left(q^{p}-c\right) s_{i}(5)$
- $(5)+(3) \Rightarrow q^{p} \alpha \geq\left(q^{p}-c\right) s_{i}+M$
- $\alpha \geq\left\lceil\frac{\left(q^{p}-c\right) s_{i}+M}{q^{p}}\right\rceil=s_{i+1}$ (7)

Generation of the sequence

- $s=M / c$
- $c s=M$
- $c s+s q^{p}=s q^{p}+M$
- $s q^{p}=\left(q^{p}-c\right) s+M$
- $s=\frac{\left.q^{p}-c\right) s+M}{q^{p}}=f(s)$

Then, $s_{n+1}=f\left(s_{n}\right)$.

- $\left(q^{p}-c\right) / q^{p}=1-c / q^{p}<1$, because $c \leq q^{p}$.
- Thus $\left|f^{\prime}(s)\right|<1$ always, so the iteration converges into M / c.
- Also, this function has the property $s \geq f(s) \Leftrightarrow s \geq\left(1-c / q^{p}\right) s+M / q^{p} \Leftrightarrow c s / q^{p} \geq M / q^{p} \Leftrightarrow c s \geq M$ which trivially holds, because $c s=M$.

Then, $s_{0} \leq s_{1} \leq \ldots \leq s_{i} \leq M / c$.

Convergence of the sequence

We have now proved that given $c \alpha \geq M$ and $\alpha \geq s_{0}$ we can inductively prove $\alpha \geq s_{i}$. And also s_{i} converges into $\lceil M / c\rceil$, so eventually we can prove $\alpha \geq\lceil M / c\rceil$ using only division by q. We still need to prove that the convergence is fast.
Denote $a=\left(q^{p}-c\right) / q^{p}$ and $b=M / q^{p}$. Then $1-a=c / q^{p}$.

- $s_{1} \geq a s_{0}+b$
- $s_{2} \geq a s_{1}+b \geq a\left(a s_{0}+b\right)+b$
- $s_{j} \geq b \sum_{i=0}^{j-1} a+a^{j} s_{0}=b\left(1-a^{j}\right) /(1-a)+a^{j} s_{0}=$ $b /(1-a)-a^{j}\left(b /(1-a)-s_{0}\right)=M / c-a^{j}\left(M / c-s_{0}\right)$

So, if $a^{j}\left(M / c-s_{0}\right)<1$ we can see that the difference between s_{j} and M / c is less than one. Therefore we need at most $j+1$ steps to prove $\alpha \geq\lceil M / c\rceil$.
$c>q^{p} / 2 \Rightarrow\left(q^{p}-c\right)<q^{p} / 2 \Rightarrow a<1 / 2$. Thus, $a^{j}\left(M / c-s_{0}\right)<1$ holds if $(1 / 2)^{j}\left(M / c-s_{0}\right)<1$ holds. By solving j we obtain
$j>\log _{2}\left(M / c-s_{0}\right)$ which completes the proof.

Normal Form for CP Proofs

Let $\Sigma=\left\{I_{1}, \ldots, I_{p}\right\}$ be an unsatisfiable set of linear inequalities, and suppose that absolute value of every coefficient and constant term in each inequality of Σ is bounded by B. Let $A=p B$.
Theorem 5.6.6
Let P be a CP refutation of Σ having l lines. Then there is a CP refutation P^{\prime} of Σ, such that P^{\prime} has $\mathcal{O}\left(l^{3} \log (A)\right)$ lines and such that each coefficient and constant term appearing in P^{\prime} has absolute value equal to $\mathcal{O}\left(l 2^{l} A\right)$.
Proof. Long and hard to understand.
Corollary 5.6.2
Let Σ be an unsatisfiable set of linear inequalities, and let n denote the size $|\Sigma|$. If P is a CP refutation of Σ having l lines, then there is a CP refutation P^{\prime} of Σ, such that P^{\prime} has $\mathcal{O}\left(l^{3} \log (n)\right)$ lines and such that the size of the absolute value of each coefficient and constant term appearing in P^{\prime} is $\mathcal{O}(l+\log (n))$.

Summary

We should have learned today that...

- There is polynomial size CP proof for generalized version of PHP
- CP p-simulates CP_{q} and CP_{q} p-simulates CP so they are polynomially equivalent.
- The size of coefficients in a CP refutation depends polynomially on the length of the refutation and the size of the CNF formula.

