Bounds for Polynomial Calculus

Jori Dubrovin

Presentation Outline

■ Polynomial calculus in Boolean basis for CNF.

- Polynomial calculus in Fourier basis.
- Gaussian calculus for linear equations (XOR).

■ Relationships of the above.
■ Degree lower bound for polynomial calculus using expansive linear equation systems.

Polynomial Calculus

- Translate formulas to polynomials in $F[\mathbf{x}]$.
- Inference rules:

$$
\frac{p(\mathbf{x})=0}{x_{i} p(\mathbf{x})=0} \quad \frac{p_{1}(\mathbf{x})=0 \quad p_{2}(\mathbf{x})=0}{a_{1} p_{1}(\mathbf{x})+a_{2} p_{2}(\mathbf{x})=0}
$$

- If $P \subseteq F[\mathbf{x}]$ is a set of polynomials with no common zero point, then a PC refutation is a derivation of $1=0$ from P.
- The degree of a refutation is the maximal degree of a polynomial.
$\square \operatorname{deg}(P):=$ minimal degree of a refutation of P.

Gaussian Calculus over GF(2)

- Translate xor formulas to linear equations.
- Inference rule:

$$
\frac{\sum_{i \in S} x_{i}+a=0 \quad \sum_{i \in T} x_{i}+b=0}{\sum_{i \in S} x_{i}+a+\sum_{i \in T} x_{i}+b=0}
$$

\square If L is an unsatisfiable system of linear equations, then a GC refutation is a derivation of $1=0$ from L.
\square The width of a refutation is the maximal number of variables in an equation.

- $w_{G}(L):=$ minimal width of a refutation of L.

Where Are We Going To?

■ Resolution refutation of width w

$$
\Rightarrow
$$

PC refutation of degree $\leq 2 w$

- Some CNF problems that are hard for resolution are also hard for polynomial calculus in Boolean basis.

Binomial Calculus

■ Restriction of polynomial calculus to binomials.
■ Theorem 5.5.13. If a set of binomials P has a PC refutation of degree d, it also has a BC refutation of degree d.

- Correspondence (not one-to-one) between linear equations over GF(2) and binomials in Fourier basis with coefficients in $\{-1,1\}$.

Binomial Degree vs. Gaussian Width

■ If l is a linear equation $x_{i_{1}}+\cdots+x_{i_{k}}+a=0$, its balanced Fourier representation is

$$
P_{F}(l)=\prod_{r=1}^{\lfloor k / 2\rfloor} y_{i_{r}}+(-1)^{1-a} \prod_{r=\lfloor k / 2\rfloor+1}^{k} y_{i_{r}} .
$$

- Corollary 5.5.5. Let L be a minimal unsatisfiable set of linear equations of width at most k. Then

$$
\frac{w_{G}(L)}{2} \leq \operatorname{deg}\left(P_{F}(L)\right) \leq \max \left\{k,\left\lceil\frac{w_{G}(L)}{2}\right\rceil+1\right\}
$$

Expansion

- The boundary of a set of equations L, denoted ∂L, is the set of variables x such that the truth value of exactly one equation in L depends on x.
- Let L be an unsatisfiable set of equations and let s denote the least size of an unsatisfiable subset of L. The expansion of L is defined as

$$
e(L)=\min \left\{\left|\partial L^{\prime}\right|: L^{\prime} \subseteq L, \frac{s}{3}<\left|L^{\prime}\right| \leq \frac{2 s}{3}\right\} .
$$

Thus, every medium-size subset of L has a boundary of at least $e(L)$ variables.

High Expansion Yields High Degree

■ Theorem 5.5.18. Let L be an unsatisfiable set of linear equations over GF(2), each equation of width at most k. Then

$$
\operatorname{deg}\left(P_{F}(L)\right) \geq \max \left\{k, \frac{e(L)}{2}+\Theta(1)\right\}
$$

■ Proof idea:
■ In every Gaussian refutation of L, there is an intermediate equation l that is implied by a medium-size subset L^{\prime} of L.
$\square l$ depends on ∂L^{\prime}, therefore l has $\geq e(L)$ variables.
\square Approximate $w_{G}(L)$ by $e(L)$ in Corollary 5.5.5.

Equations from Expander Graphs

■ We get unsatisfiable linear equation systems with high expansion from Tseitin's odd-charged graphs.

- L contains n equations, each of width k.
$\square n k / 2$ variables.
$\square e(L)=\Omega(n)$.
- By Thm. 5.5.18, $\operatorname{deg}\left(P_{F}(L)\right)=\Omega(n)$.
$■ \Rightarrow$ No low-degree PC refutation in Fourier basis.
- How about PC refutations for CNF formulas in Boolean basis?
■ Same lower bound (next slide).

Clausification Keeps Degree High

- Let L be an unsatisfiable set of linear equations of width k.
- Let $C(L)$ be the clausification of L where each equation is expressed as 2^{k-1} clauses of width k.
- Let $Q(C(L))$ be the set of canonical polynomials of $C(L)$ in Boolean basis along with the polynomials $x_{i}^{2}-x_{i}$.
■ Theorem 5.5.16.

$$
\operatorname{deg}(Q(C(L))) \geq \max \left\{\operatorname{deg}\left(P_{F}(L)\right), k+1\right\}
$$

Summary

- Polynomial calculus for refuting CNF formulas.
- Binomial calculus in Fourier basis and Gaussian calculus for refuting linear equation systems.
- Tight connection between Gaussian width and BC refutation degree.
- Linear lower bound on the degree of PC refutations using linear equation systems with high expansion.
■ PC refutation length or size?

