Resolution Width and Interpolation

Jori Dubrovin

Part I: From Short to Narrow Proofs

Recall the rule of **resolution**: $\frac{C \cup \{x\} \quad D \cup \{\overline{x}\}}{C \cup D}$

- Resolution is a sound and complete refutation system for CNF formulas.
- The length of a refutation is number of clauses in it.
- The width of a refutation is the maximal number of literals in a clause.
- If a contradiction has a short refutation, then it has a narrow refutation.

A refutation procedure can look for narrow proofs.

Resolution with Weakening

The rule of **resolution**: From $(C \lor x) \land (D \lor \overline{x})$ we can infer $C \lor D$. $\frac{C \cup \{x\}}{C \cup D}$

• We will also allow **weakening** and **simplification**:

$$\frac{C}{C \cup D} \qquad \qquad \boxed{\{1\}}$$

Resolution with weakening and simplification is a sound and complete refutation system for CNF formulas.

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

Restriction of Clauses

If *F* is a set or a sequence of clauses and *x* is a variable, then $F_{x=1}$ is the **restriction** of *F* by x = 1.

$$F \qquad F_{x=1}$$

$$C \qquad \mapsto \qquad C \qquad \text{if } x, \overline{x} \notin C$$

$$C \qquad \mapsto \qquad \{1\} \qquad \text{if } x \in C$$

$$C \qquad \mapsto \qquad C - \{\overline{x}\} \qquad \text{if } \overline{x} \in C$$

• We can derive $F_{x=1}$ from $F \cup \{x\}$ by resolution.

$$\bullet F_{x=0} := F_{\overline{x}=1}$$

If Π is a resolution derivation from a clause set F, then $\Pi_{x=a}$ is a derivation from $F_{x=a}$.

Width of Resolution

- The width w(C) of a clause C is the number of literals in it.
- The width w(F) of a set or a sequence F of clauses is the **maximum** width of a clause in F.
- $w(F \vdash A)$ is the **minimum** width of a derivation of *A* from a clause set *F*.
- We are looking for a relationship between the width and length of a refutation.

Short Tree-Refutations Are Narrow

- Theorem 5.4.11. If there is a tree-like refutation of F consisting of at most 2^d lines, then $w(F \vdash \Box) \leq w(F) + d$.
- Proof by induction on the number of variables *n*.
- Base case n = 0. The only possible refutation is $\langle \Box \rangle$, which has length 1 and width 0.
- Induction step. Let F be an unsatisfiable set of clauses with n > 0 variables and let Π be a refutation of F of length at most 2^d.

Lemma: If
$$w(F_{x=0} \vdash \Box) \le w$$
 then $w(F \vdash \{x\}) \le w+1$.

■ 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict

I. *F* ⊢ {*x*} in length ≤ 2^{*d*-1}. Restrict I. *F_{x=0}* ⊢ □ in length ≤ 2^{*d*-1}. Ind. hyp.

■ 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict

- 2. $F_{x=0} \vdash \Box$ in length $\leq 2^{d-1}$. Ind. hyp.
- 3. $F_{x=0} \vdash \Box$ in width $\leq w(F) + d 1$. Lemma

■ 2. $F_{x=0} \vdash \Box$ in length $\leq 2^{d-1}$. Ind. hyp.

■ 3. $F_{x=0} \vdash \Box$ in width $\leq w(F) + d - 1$. Lemma

■ 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate

- 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict
- 2. $F_{x=0} \vdash \Box$ in length $\leq 2^{d-1}$. Ind. hyp.
- 3. $F_{x=0} \vdash \Box$ in width $\leq w(F) + d 1$. Lemma
- 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate
- 5. $F \cup \{x\} \vdash F_{x=1}$ in width $\leq w(F)$.

- 1. *F* ⊢ {*x*} in length ≤ 2^{*d*-1}. Restrict
 2. *F_{x=0}* ⊢ □ in length ≤ 2^{*d*-1}. Ind. hyp.
 3. *F_{x=0}* ⊢ □ in width ≤ w(*F*) + *d* − 1. Lemma
- 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate
- 5. $F \cup \{x\} \vdash F_{x=1}$ in width $\leq w(F)$.
- 6. $F \vdash \{\overline{x}\}$ in length $\leq 2^d$. Restrict

■ 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict ■ 2. $F_{x=0} \vdash \Box$ in length $\leq 2^{d-1}$. Ind. hyp. **3.** $F_{x=0} \vdash \Box$ in width $\leq w(F) + d - 1$. Lemma ■ 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate ■ 5. $F \cup \{x\} \vdash F_{x=1}$ in width $\leq w(F)$. • 6. $F \vdash \{\overline{x}\}$ in length $\leq 2^d$. Restrict **7.** $F_{x=1} \vdash \Box$ in length $\leq 2^d$. Ind. hyp.

■ 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict • 2. $F_{x=0} \vdash \Box$ in length $< 2^{d-1}$. Ind. hyp. **3.** $F_{x=0} \vdash \Box$ in width $\leq w(F) + d - 1$. Lemma ■ 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate ■ 5. $F \cup \{x\} \vdash F_{x=1}$ in width $\leq w(F)$. • 6. $F \vdash \{\overline{x}\}$ in length $\leq 2^d$. Restrict **7.** $F_{x=1} \vdash \Box$ in length $< 2^d$. Ind. hyp. ■ 8. $F_{x=1} \vdash \Box$ in width $\leq w(F) + d$.

■ 1. $F \vdash \{x\}$ in length $\leq 2^{d-1}$. Restrict • 2. $F_{x=0} \vdash \Box$ in length $< 2^{d-1}$. Ind. hyp. **3.** $F_{x=0} \vdash \Box$ in width $\leq w(F) + d - 1$. Lemma ■ 4. $F \vdash \{x\}$ in width $\leq w(F) + d$. Propagate ■ 5. $F \cup \{x\} \vdash F_{x=1}$ in width $\leq w(F)$. • 6. $F \vdash \{\overline{x}\}$ in length $\leq 2^d$. Restrict **7.** $F_{x=1} \vdash \Box$ in length $< 2^d$. Ind. hyp. ■ 8. $F_{x=1} \vdash \Box$ in width $\leq w(F) + d$. 9. Combine 4, 5, and 8 to get a narrow refutation.

Results

- Let L(F) (resp. $L_T(F)$) be the length of the shortest (tree-like) refutation of F.
- We just proved that $\log_2 L_T(F) \ge w(F \vdash \Box) w(F)$.
- Dag-like proofs: $\log_2 L(F) = \Omega\left(\frac{(w(F \vdash \Box) w(F))^2}{n}\right)$.
- Simple proofs for exponential lower bounds on resolution length.
- Ben-Sasson and Wigderson show a family of contradictions such that $w(F \vdash \Box) = O(1)$ and $L_T(F) = 2^{\Omega(|F|/\log|F|)}$.

A Refutation Procedure

- For a clause set F, repeat for width bound w = 0, 1, ...:
 - Add to F all resolvents of width $\leq w$.
 - Stop if $\Box \in F$.
- Running time $n^{O(w(F \vdash \Box))}$.
- For some formulas, exponentially faster than DPLL.

Part II: Interpolation

- What an interpolant is.
- How to obtain one.
- Tree-like resolution does not polynomially simulate resolution.

Interpolants

- Let p, q, and r be disjoint vectors of propositional variables.
- Let $A(\mathbf{p}, \mathbf{q})$ and $B(\mathbf{p}, \mathbf{r})$ be propositional formulas such that $A \rightarrow \neg B$ is a tautology.
- Then there exists an interpolant $C(\mathbf{p})$ such that $A \rightarrow C$ and $C \rightarrow \neg B$ are tautologies.
- An interpolant always exists: let $C(\mathbf{a}) = \bigvee_{\mathbf{q}} A(\mathbf{a}, \mathbf{q})$.

Interpolants from Resolution

- Let $A(\mathbf{p}, \mathbf{q})$ and $B(\mathbf{p}, \mathbf{r})$ be CNF-formulas such that $A \wedge B$ is unsatisfiable.
- Theorem 5.4.13. If there is a resolution refutation for $A \wedge B$ of length k, then there exists a Boolean circuit $C(\mathbf{p})$ such that
 - $A \rightarrow C$ and $C \rightarrow \neg B$.
 - The circuit size of C is at most $kn^{O(1)}$.
 - If the variables in \mathbf{p} occur only positively in A or only negatively in B, then C is a monotonic circuit.

Formulating st-Connectivity

- A graph cannot have a walk from *s* to *t* and at the same time a cut [S, T] such that $s \in S$ and $t \in T$.
- Let $A(\mathbf{p}, \mathbf{q}) = \mathbf{p}$ defines an undirected graph and \mathbf{q} is a walk from 0 to n + 1".
- Let $B(\mathbf{p}, \mathbf{r}) =$ "r defines a cut between 0 and n + 1".
- Let $p_{i,j}$ = "there is an edge from i to j", $q_{i,j}$ = "the ith node on the walk is j", and r_i = "node i is in T".
- $\blacksquare B(\mathbf{p},\mathbf{r}) = \overline{r_0} \wedge r_{n+1} \wedge \bigwedge_{i \neq j} (\overline{r_i} \vee \overline{p_{i,j}} \vee r_j).$

The $p_{i,j}$ occur only negatively in B.

Proving *st***-Connectivity**

• The total formula size is $O(n^3)$.

- There is a resolution refutation of size $O(n^4)$ of $A \wedge B$.
- Using the existence of a monotonic interpolant circuit, it can be shown that the size of a *tree-like* resolution refutation is $n^{\Omega(\log n)}$.
- The length of the shortest tree-like resolution can be superpolynomial in the length of a general resolution.

Generally
$$L_T(F) = 2^{O\left(\frac{L(F)\log\log L(F)}{\log L(F)}\right)}$$
.

Summary

- The width of a refutation is the maximum number of literals in a clause.
- A tree-like refutation of length L_T implies a refutation of width $\log_2 L_T$.
- A general refutation of length *L* implies a refutation of width $O(\sqrt{n \log L})$.
- No narrow proof implies no short proof.
- Interpolants can be constructed from resolution proofs.
- Tree-like resolution does not polynomially simulate general resolution.

