Leo Bhebhe

What is a polynomial Calculus?

The polynomial calculus (PC) is a refutation system for unsatisfiable sets of polynomial equations over a field.

Fix field *F* and let $P \subseteq F[x_1, ..., x_n]$ be the finite set of multivariate polynomials over *F*.

An axiom of PC is a polynomial $p \in P$ or $x_i^2 - x_i$, for $1 \le i \le n$.

There are two rules of inference of PC

- Multiplication by a variable: From p infer $x_i \cdot p$, where $1 \le i \le n$
- Linear combination: From p, p', infer $a \cdot p + b \cdot p'$, where $a, b \in F$.

Derive constant polynomial 1

Degree = maximum degree of polynomial appearing in the proof

Can find proof of **degree d** in time **n**^{o(d)} using Groebner basis-like algorithm (linear algebra)

Derivation

A derivation of polynomial q from P is a finite sequence $\prod = (p_1, ..., p_m)$

• Where $q = p_m$ and for each $1 \le i \le m$

- Either $p_i \in P$ or there exists $1 \le j < i$ such that $p_i = x_k p_j$ for some $1 \le k \le n$
- Or there exists $1 \le j, k < i$ such that $p_i = ap_j + bp_k$.

By $P \models_{d} q$, we denote that q has a derivation $\prod = (p_1, \dots, p_m)$ from P of degree at most d. That is $\max \{ \deg(p_i) : 1 \le i \le m \} \le d$

Finally $P \models_{d,m} q$ means that $P \models_{d} q$ and additionally that the number of lines in the derivation $\prod = (p_1, \dots, p_m)$ is m.

A PC refutation of P is a derivation of 1 from P.

The degree of refutation $\prod = (p_1, \dots, p_m)$ is min $(\deg(p_i): 1 \le i \le m)$.

The PC degree of unsatisfiable set P of polynomials, denoted deg(P) is the minimum degree of a refutation of P.

Derivation

In both NS and PC, a refutation of unsatisfiable CNF formulas $\wedge_{i=1}^r C_i$ is a formal manifestation that

$$1 \in I = \left\langle qc_1, ..., qc_r, x_1^2 - x, ..., x_n^2 - x^n \right\rangle$$

For NS, 1 is explicitly given as a linear combination over $F[x_1, ..., x_n]$ of the qc_i and $(x_1^2 - x)$

While PC, a derivation of the fact that 1 belongs to I is given stepwise

It follows that the degree of a PC refutation of a formula A is at most the degree of an NS refutation of A.

Example of Derivation

Consider the unsatisfiable CNF formula obtained by taking the conjunction of

 $x_1, \neg x_1 \lor x_2, \neg x_2 \lor x_3, \dots, x_{n-1} \lor x_n, \neg x_n$ Using the the q_A translation, we have the polynomials $1 - x_1, x_1 - x_1x_2, x_2 - x_2x_3, \dots, x_{n-1} - x_{n-1}x_n, x_n$ Consider the following derivation: $1, x_1 - x_1x_2, x_2 - x_1x_2, \dots, x_{n-1} - x_{n-1}x_n, x_n$

- 2. $x_2 x_2 x_3$, axiom 3. $x_1 x_2 x_3 - x_2 x_3$, multiplication of (1) by $-x_3$
- 4. $x_1x_2 x_1x_2x_3$, multiplication of (2) by x_1
- 5. $x_1 x_1 x_2 x_3$, addition of (1), (4)
- 6. $x_1 x_1 x_3$, addition of (3),(5)

The last line represents $\neg x_1 \lor x_3$

By repeating this we can derive $\neg x_1 \lor x_n$, i.e. $x_1 - x_1 x_n$

- 1. $x_1 x_1 x_n$, derived from the above.
- 2. x, axiom.
- 3. $x_1 x_n$, multiplication of (1) by x_1
- 4. x1, addition of (1),(3)
- 5. $1-x_1$, axiom
- 6. 1, addition of (4),(5)

An easy proof by induction on the number of inferences proves that

- If there's a polynomial calculus refutation of CNF formula A, then A is not satisfiable
- Given a Nullstellensatz refutation, we can obviously furnish a refutation in the polynomial calculus, of the same degree or less
- Hence it follows that PC is complete, with degree bound of n for unsatisfiable CNF formulas on n variables

Theorem 5.5.7 Completeness of a polynomial calculus

If there is no 0,1 solution of the polynomial equations $p(x_1,...,x_n)$ for all $p \in P \subseteq F[x_1,...,x_n]$

Then there's a degree n+1 derivation of 1 from $P \cup \left(x_i^2 - x_1, \dots, x_n^2 - x_n\right)$ in PC.

Theorem 5.5.1 (D. Hilbert) yields a PC derivation of 1 from $P \cup (x_i^2 - x_1, ..., x_n^2 - x_n)$ In that derivation by judicious application of axioms $x_i^2 - x_1, ..., x_n^2 - x_n$ can ensure that the degree is never larger than n+1

Corollary 5.5.3 (Folklore). PC is implicationally complete; i.e.

$$(\forall x_1,\ldots,x_n \in F) \left[\bigwedge_{i=1}^m p_i(x_1,\ldots,x_n) = 0 \rightarrow q_i(x_1,\ldots,x_n) = 0 \right]$$

That implies that $p_1, \dots, p_m \models_{\mathcal{R}C} q$

The following alternate proof of completeness of PC for CNF formulas yields the simple, but important fact that constant width resolution refutations can be polynomial simulated by a constant degree polynomial calculus refutations

Completeness of a polynomial calculus

- The following alternate proof of completeness of PC for CNF formulas yields the simple, but important fact that
 - Constant width resolution refutations can be polynomial simulated by a constant degree polynomial calculus refutations
 - This is formalized in the following theorem (Next slide) :

Theorem 5.5.8

If the set C of clauses has a resolution refutation of width w, then C has a polynomial calculus refutation of degree at most 2w.

$$\frac{A \cup B \cup \{x\}, \dots, B \cup C \cup \{\overline{x}\}}{A \cup B \cup C}$$

Where $A = \{\alpha_1, ..., \alpha_r\}, B = \{l_1, ..., l_r\}$ and $C = \{\beta_1, ..., \beta_r\}$

And literals $\alpha_l l_1 \beta_l$ range among variables x_1, \dots, x_n and their negations.

Recall that $q_A = \prod_{\bar{x} \in A} x \cdot \prod_{x \in A} (1-x)$ and Define polynomials q_B and q_C analogously for clauses *B* and *C*.

Theorem 5.5.8

With these convetions, $A \cup B \cup \{x\}$ is represented by the polynomial $(1-x) \cdot q_A \cdot q_B$ And $A \cup B \cup \{\overline{x}\}$ is represented by $x \cdot q_A \cdot q_B$

By successive multiplications, we obtain

 $(1-x) \cdot q_A \cdot q_B \cdot q_C$

 $x \cdot q_A \cdot q_B \cdot q_C$

So, by addition we have $q_A \cdot q_B \cdot q_C$, which represents the solvent

Clearly the degree of the derivation is at most $1 + \deg(q_A) + \deg(q_B) + \deg(q_C)$

Hence at most twice the width of any clause appearing in the resolution derivation

Definition 5.5.5

A degree *d* pseudoideal *I* in is a vector subspace of $F[x_1, ..., x_n]$, say *V* consisting of polynomials of degree at most *d*, such that if $p \in I$ and $\deg(p) < d$, then for $1 \le i \le n$, $x_i p \in I$.

Let $p_1, \dots, p_k \in F[x_1, \dots, x_n]$ be multivariate polynomials of degree at most d.

Then $I_{d,n}(p_1,...,p_k)$ denotes the smallest degree d pseudo-ideal of $F[x_1,...,x_n]$

Theorem 5.5.9

For any multilinear polynomials

$$p_1, \dots, p_k, q \in F[x_1, \dots, x]/ < x_1^2 - x_1, \dots, x_1, \dots, x_n^2 - x_n >$$

Of degree at most d,

$$p_1, \ldots, p_k \models \ _d q \Leftrightarrow q \in I_{d, \mathbf{x}}(p_1, \ldots, p_k)$$

Proof

Let $V = \{q \in F[x_1, ..., x] : p_1, ..., p_k \mid _d q$

We first show direction from left to the right, $V \subseteq I_{d,x}(p_1,...,p_k)$ by induction on the number of m of inferences in the derivation of q from $p_1,...,p_k$

If
$$p_1, \dots, p_k \models_{d,1} q$$
 then $q \in \{p_1, \dots, p_k\}$, so that $q \in I_{d,n}(p_1, \dots, p_k)$

Suppose now that $\prod = (r_1, \dots, r_{m+1})$ is a derivation of $q = r_{m+1}$ of degree at most d from p_1, \dots, p_k

Case 1. deg(p) < d and $q = x_i \cdot r_j$, for some $1 \le i \le n$ and $1 \le j \le m$

Then by definition, $q \in I_{d, \pi}(p_1, ..., p_k)$

Case 2. q = ar + br' for some $a, b \in F$ and $r, r' \in \{r_1, \dots, r_m\}$

Since $I_{d,x}(p_1,...,p_k)$ is a vector space, and hence closed under the formation of linear

Proof

<u>Now consider the right to left</u>, i.e. $I_{d,n}(p_1,...,p_k) \subseteq V$

By definition $p_1, \dots, p_k \subseteq V$ and V is closed under linear combinations over F.

And if $q \in V$ is of degree less than d, then for $1 \le i \le n$, $x_i q \in V$.

By definition $I_{d,n}(p_1,...,p_k)$ is the smallest vector space satisfying these same properties, and so $I_{d,n}(p_1,...,p_k) \subseteq V$

Theorem 5.5.10

Algorithm CONSTRUCTBASIS_d produces a basis of vector space $I_{d,n}(p_1,...,p_k)$

Theorem 5.5.12

The degree d bounded polynomial calculus is automizable;

That is there's an algorithm A_d , which when given polynomials

 $(p_1, \dots, p_k) \in F[(x_1, \dots, x_n)]$ of degree at most d having no 0, 1 solution,

yields a derivation of $1 \in \langle p_1, \dots, p_k, x_1^2 - x_1, \dots, x_n^2 - x_n \rangle$ in time $O(n^{3d})$

More generally, if $q \in I_{d,n}(p_1, ..., p_k)$, then Ad yields a PC derivation this fact.

Fourier Basis

Let $q_0 = 0$, (i.e. FALSE is represented by 1), $q_1 = -1$, (i.e. TRUE is represented by -1) $q_{x_i} = y_i$ (i.e. the propositional variable x_i is represented by the algebraic variable y_i)

$$q_{\neg A} = -q_A, q_{A \lor B} = \frac{q_A q_B + q_A + q_B - 1}{2} \quad q_{A \land B_i} = \frac{-q_A q_B + q_A + q_B + 1}{2} \text{ and } q_{A \oplus B} = q_A \cdot q_B$$

When working with Fourier basis, rather than the auxiliary polynomials $x_i^2 - x_i$
We use the auxiliary polynomials $y_i^2 - 1$ which ensures $x_i^2 - x_i$ takes value (-+)

Propositional formula A variables $x_1, ..., x_n$ when using Fourier basis will be written in the form $(y_1, ..., y_m) \in F[(y_1, ..., y_m)]$ where $y_1 = 1 - 2x_i$

To obtain degree lower bounds for PC derivation we focus on linear equations equations over GF(2). Fourier representation of linear equation $\sum_{i=1}^{r} x_i + a = 0$ over GF(2) is

 $(-1)^{1-a}\prod_{i=1}^{r}\frac{1-x_i}{2} = 0$ which will generally be written in the form $(-1)^{1-a}\prod_{i=1}^{r}y_i = 0$, Where $y_1 = 1-2x_i$. Later introduced is the balanced Fourier representation of the form $\prod_{i=1}^{r/2}y_i + (-1)^{1-a} \cdot \prod_{i=\lfloor r/2 \rfloor + 1}^{r}y_i = 0$

The Fourier basis allows for substantial simplification of lower bound arguments for NS and PC

Definition of Gaussian Calculus

The Gausian Calculus is a refutation system for unsatisfiable set of linear equations over field

Fix prime q, and let $L = \{l_i : 1 \le i \le m\}$ be a set of m linear equations over GF(q) where each l_i has the form

$$\sum_{j \in S_i} a_{i,j} x_j + b_i = 0, \text{ where } a_{i,j}, b_i \in \{0, 1, \dots, q-1\}$$

An axiom is a linear equation in L.

Inference rules of GC

The Gausian Calculus has two rules of inference

- Scalar multiplication: From linear equation 1 to the form

$$\sum_{j \in S_i} a_j x_j + b = 0$$

Infer the linear equation α l of the form

$$\sum_{j \in S} \alpha a_j x_j + \alpha b = 0, \text{ where } \alpha \in GF(q)$$

Addition: From linear equations l, l' respectively of the form

$$\sum_{j \in S_i} a_j x_j + c = 0$$
$$\sum_{j \in S_i} a_j x_j + d = 0$$

Infer the linear equation l+l' of the form

3

$$\sum_{a \in S \cup S_j} (a_j + b_j) x_j + (c + d) = 0$$

Here, if $j \in S - S'$ then $b_j = 0$ if $j \in S' - S$, then $a_j = 0$

Derivation, refutation and width of GC

A GC derivation of l from L is a finite sequence $E_1, E_2, ..., E_r$ of linear equations, such that l is the equation E_r

And for each $1 \le j \le r$,

 E_i is either an axiom (i.e. element of L) or There exist $1 \le j < i$ such that E_i is obtained by scalar multiplication fro E_j or There exist $1 \le j, k < i$ such that E_i is obtained by addition of E_i, E_k

Often we speak of E_i as the line of derivation.

A GC *refutation* is a derivation of 1=0 from L.

The width of a refutation $E_i, ..., E_r$ is the maximum number of variables appearing in any E_i , i.e. $\max \{ | var s(E_i) | : 1 \le i \le r \}$ The Gaussian width is unsatisfiable set L of linear equations is the minimum length of a refutation of L.

Completeness of GC

Standard Gaussian elimination proves that

- Proves that Gaussian calculus is complete, in that if L is usatisfibale set of linear equations over filed F, then there's a refutation of L

- Yields that the number of lines in a refutation of an unsatisfiable set $L = \{l_i : 1 \le i \le m\}$ of linear equations in variables $x_i, ..., x_n$ in GF(q) is mn.

Summary

- The polynomial calculus is a refutation system for unsatisfiable sets of polynomial equations over a field.
- Refutation of a polynomial *P* is a derivation of 1 from *P*
- The degree of refutation is less or equal to the number of polynomials
- Completeness of PC for CNF formulas: constant width resolution refutations can be polynomially simulated by constant degree polynomial calculus refutations
- Automatizability of the polynomial calculus and characterization of degree d polynomial calculus derivations
- The Fourier basis which allows for substantial simplification of lower bound arguments for NS and PC
- Definition, derivation, refutation and width of Gaussian Calculus (Introduction)