ISOPERIMETRIC PROBLEMS

Satu Elisa Schaeffer
elisa.schaeffer@tkk.fi

T-79.7001, April 242006

The isoperimetric problem

Among all closed curves of length ℓ, which one encloses the maximum area?

For graphs: separator problems (vertex and edge cuts) - relations between the cut sizes and the sizes of the separated parts

Volume and boundary

- Notation: graph $G=(V, E(G))$, set $S \subset V,|V|=n$
- Volume: vol $S=\sum_{v \in S} d_{v}$
- Edge boundary: $\partial S=\{\{u, v\} \in E(G) \mid u \in S, v \notin S\}$
- Vertex boundary: $\delta S=\{v \notin S \mid\{u, v\} \in E(G), u \in S\}$

Related problems

Given a fixed integer m, find a subset S with $m \leq \operatorname{vol} S \leq \operatorname{vol} \bar{S}$ s.t.

1. the boundary $\partial S=\{\{u, v\} \in E(G) \mid u \in S, v \notin S\}$ contains as few edges as possible
2. the boundary $\delta S=\{v \notin S \mid\{u, v\} \in E(G), u \in S\}$ contains as few vertices as possible

Cheeger constant

$$
h_{G}=\min _{S} \frac{|\partial S|}{\min \{\operatorname{vol} S, \operatorname{vol} \bar{S}\}}
$$

From the definition, we get for S s.t. vol $S<\operatorname{vol} \bar{S}$ that $|\partial S| \geq h_{G} \cdot \operatorname{vol} S$.

Also, G is connected iff $h_{G}>0$.

Vertex expansion

$$
g_{G}=\min _{S} \frac{|\delta S|}{\min \{\operatorname{vol} S, \operatorname{vol} \bar{S}\}}, \quad \text { Regular graphs: } g_{G}(S)=\frac{|\delta S|}{\min \{|S|,|\bar{S}|\}}
$$

Definition: (volume replaced by unit measure)

$$
\bar{g}_{G}=\min _{S} \frac{|\delta S|}{\min \{|S|,|\bar{S}|\}}
$$

LEMMA: $2 h_{G} \geq \lambda_{1}$

Setup for the proof:

- C is a cut that achieves h_{G}
- C splits V into sets A and B
- Definition: $f(v)= \begin{cases}\frac{1}{\mathrm{vol} A}, & \text { if } v \in A, \\ -\frac{1}{\operatorname{vol} B}, & \text { if } v \in B\end{cases}$

EXPRESSION FOR λ_{1}

$$
\lambda_{1}=\lambda_{G}=\inf _{f \perp T_{1}} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{v}(f(v))^{2} d_{v}}
$$

Proof of $2 h_{G} \geq \lambda_{1}$, PART $\frac{1}{2}$

Using the definition of λ_{1} with definitions of vol S, C and f, we get the result. First we simply "partition" the expression using A and B :

$$
\begin{aligned}
\lambda_{1}= & \inf _{f \perp T_{1}} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{v}(f(v))^{2} d_{v}} \\
= & \frac{\sum_{\substack{u \in A, v \in B}}(f(u)-f(v))^{2}+\sum_{\substack{u \in A, v \in A}}(f(u)-f(v))^{2}+\sum_{\substack{u \in B, v \in B}}(f(u)-f(v))^{2}}{\sum_{v \in A}(f(v))^{2} d_{v}+\sum_{v \in B}(f(v))^{2} d_{v}}
\end{aligned}
$$

Proof continues, Part $\frac{2}{2}$

We use the definitions of f and vol :

$$
\begin{aligned}
\lambda_{1} & =\frac{\sum_{u \in A, v \in B}\left(\frac{1}{\operatorname{vol} A}+\frac{1}{\operatorname{vol} B}\right)^{2}+0+0}{\sum_{v \in A} \frac{d_{v}}{(\operatorname{vol} A)^{2}}-\sum_{v \in B} \frac{d_{v}}{(\operatorname{vol} B)^{2}}} \\
& =\frac{|C|\left(\frac{1}{\operatorname{vol} A}+\frac{1}{\operatorname{vol} B}\right)^{2}}{(\operatorname{vol} A)^{2}} \cdot \operatorname{vol} A+\frac{1}{(\operatorname{vol} B)^{2}} \cdot \operatorname{vol} B \\
& =|C|\left(\frac{1}{\operatorname{vol} A}+\frac{1}{\operatorname{vol} B}\right)
\end{aligned}
$$

THEOREM: $\lambda_{1}>\frac{h_{G}^{2}}{2}$

Setup for proof:

- vertex labels $v_{1}, v_{2}, \ldots, v_{n}$ such that $f\left(v_{i}\right) \leq f\left(v_{i+1}\right)$
$(1 \leq i \leq n-1)$
- w.l.o.g. $\sum_{f(v)<0} d_{v} \geq \sum_{f(v) \geq 0} d_{v}$
- cuts $C_{i}=\left\{\left\{v_{j}, v_{k}\right\} \in E(G) \mid 2 \leq j \leq i<k \leq n\right\}, 1 \leq i \leq n$

Definitions for the proof

- Definition: $\alpha=\min _{1 \leq i \leq n} \frac{\left|C_{i}\right|}{\min \left\{\sum_{j \leq i} d_{j}, \sum_{j>i} d_{j}\right\}}$
- By definition $\alpha \geq h_{G}$ (divisors are the volumes of the parts)
- $V_{+}=\{v \in V \mid f(v) \geq 0\}$
- $E_{+}=\left\{\{u, v\} \in E(G) \mid u \in V_{+}, v \in V\right\}$
- $g(v)= \begin{cases}f(v), & \text { if } v \in V_{+}, \\ 0, & \text { otherwise }\end{cases}$

Harmonic eigfn f of \mathcal{L} with eigval λ_{1}

For any $v \in V$, it holds for f that

$$
\begin{align*}
& \frac{1}{d_{v}} \sum_{u \sim v}(f(v)-f(u))=\lambda_{1} f(v) \\
\Rightarrow & \lambda_{1}=\frac{1}{d_{v} f(v)} \sum_{u \sim v}(f(v)-f(u))
\end{align*}
$$

(a lemma from the previous chapter)

Proof of the theorem, part $\frac{1}{8}$

Substituting $\lambda_{1}=(\dagger)$ and summing over V_{+}

$$
\begin{align*}
\lambda_{1} & =\frac{1}{d_{v} f(v)} \sum_{u \sim v}(f(v)-f(u)) \\
& =\frac{\sum_{v \in V_{+}} f(v) \sum_{\{u, v\} \in E_{+}}(f(v)-f(u))}{\sum_{v \in V_{+}}(f(v))^{2} d_{v}}
\end{align*}
$$

because for any subset $S \subseteq V$, we have

$$
\begin{aligned}
\lambda_{1} f(v) d_{v} & =\sum_{u \sim v}(f(v)-f(u)) \\
\lambda_{1}(f(v))^{2} d_{v} & =f(v) \sum_{u \sim v}(f(v)-f(u)) \\
\lambda_{1} \sum_{v \in S}(f(v))^{2} d_{v} & =\sum_{v \in S} f(v) \sum_{u \sim v}(f(v)-f(u))
\end{aligned}
$$

Proof of the theorem, part $\frac{2}{8}$

From the defs of g, V_{+}and $E_{+}\left(\right.$as $(f(u))^{2}>0$ and $\left.g(v) \geq f(v)\right)$,

$$
\begin{align*}
\lambda_{1} & =\frac{\sum_{v \in V_{+}} f(v) \sum_{\{u, v\} \in E_{+}}(f(v)-f(u))}{\sum_{v \in V_{+}}(f(v))^{2} d_{v}} \\
& =\frac{\sum_{\substack{\{u, v\} \in E_{+}}}\left((f(v))^{2}-f(v) f(u)\right)}{\sum_{v \in V_{+}}(f(v))^{2} d_{v}} \\
& >\frac{\sum_{\{u, v\} \in E_{+}}(g(u)-g(v))^{2}}{\sum_{v \in V}(g(v))^{2} d_{v}}
\end{align*}
$$

Proof of the theorem, part $\frac{3}{8}$

Using the Cauchy-Schwarz inequality $\left(\sum x_{i} y_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right)\left(\sum y_{i}^{2}\right)$ with $x_{i}=|g(u)-g(v)|$ and $y_{i}=g(u)+g(v)$, we get

$$
\begin{align*}
\lambda_{1}> & \frac{\sum_{\{u, v\} \in E_{+}}(g(u)+g(v))^{2}}{\sum_{\{u, v\} \in E_{+}}(g(u)+g(v))^{2}} \cdot \frac{\sum_{\{u, v\} \in E_{+}}(g(u)-g(v))^{2}}{\sum_{v \in V}(g(v))^{2} d_{v}} \\
\geq & \frac{\sum_{u \sim v} \mid(g(u)-g(v) \mid)(g(u)+g(v))}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}} \tag{*}
\end{align*}
$$

Proof of the theorem, part $\frac{4}{8}$

Now using $(a+b)(a-b)=a^{2}-b^{2}$, we get

$$
\begin{aligned}
\lambda_{1} & \geq \frac{\sum_{u \sim v} \mid(g(u)-g(v) \mid)(g(u)+g(v))}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}} \\
& \geq \frac{\left(\left|(g(u))^{2}-(g(v))^{2}\right|\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}}
\end{aligned}
$$

Proof of the theorem, part $\frac{5}{8}$

Now from the definition of C_{i} and "partitioning" the edges to "steps" over the cuts C_{i}, we continue

$$
\begin{aligned}
\lambda_{1} & \geq \frac{\left(\sum_{u \sim v}\left|(g(u))^{2}-(g(v))^{2}\right|\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}} \\
& =\frac{\left(\sum_{i}\left|\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2}\right| \cdot\left|C_{i}\right|\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}} .
\end{aligned}
$$

Proof of the theorem, part $\frac{6}{8}$

Using the definition of α together with the fact that $\sum_{f(v)<0} d_{v} \geq \sum_{f(v) \geq 0} d_{v}$ and the vertex ordering, we get

$$
\begin{aligned}
\lambda_{1} & \geq \frac{\left(\sum_{i}\left|\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2}\right| \cdot\left|C_{i}\right|\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}} \\
& \geq \frac{\left(\sum_{i}\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2} \cdot \alpha \sum_{j>i} d_{j}\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}}
\end{aligned}
$$

PROOF OF THE THEOREM, PART $\frac{7}{8}$

$$
\frac{\left(\sum_{i}\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2} \sum_{j>i} d_{j}\right)^{2}}{\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}}=\frac{\sum_{i=0}^{n-1}\left(g\left(v_{i+1}\right)\right)^{2} d_{i+1}}{\sum_{v=1}^{n}(g(v))^{2} d_{v}}=1
$$

as when we multiply the nominator "open", all but one of the $\left(g\left(v_{i+1}\right)\right)^{2}$ cancel out, appearing both positive and negative, except for once for $j=i+1$, which leaves the same summation than we have in the denumerator.

Proof of the theorem, part $\frac{8}{8}$

Now we simply take out α^{2} and use the previous observation and the definition of α to complete the proof:

$$
\lambda_{1} \geq \frac{\left(\sum_{i}\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2} \cdot \alpha \sum_{j>i} d_{j}\right)^{2}}{2\left(\sum_{v}(g(v))^{2} d_{v}\right)^{2}}=\frac{\alpha^{2}}{2} \geq \frac{h_{G}^{2}}{2}
$$

Cheeger inequality

Putting together the lemma and the theorem, we have

$$
2 h_{G} \geq \lambda_{1}>\frac{h_{G}^{2}}{2}
$$

IMPROVEMENT: $\lambda_{1}>1-\sqrt{1-h_{G}^{2}}$

From the proof of the previous theorem we have $\lambda_{1}=(\triangle)$ and we define $W=(*)$:

$$
\begin{aligned}
\lambda_{1} & =\frac{\sum_{v \in V_{+}} f(v) \sum_{\{u, v\} \in E_{+}}(f(v)-f(u))}{\sum_{v \in V_{+}}(f(v))^{2} d_{v}} \\
& >\frac{\sum_{\{u, v\} \in E_{+}}(g(u)-g(v))^{2}}{\sum_{v \in V}(g(v))^{2} d_{v}}=W
\end{aligned}
$$

PRoof of THE SECOND THEOREM

Again we extend and use some already familiar tricks (plugging in the def. of W itself):

$$
\begin{aligned}
W & =\frac{\sum_{\{u, v\} \in E_{+}}(g(u)+g(v))^{2}}{\sum_{\{u, v\} \in E_{+}}(g(u)+g(v))^{2}} \cdot \frac{\sum_{\{u, v\} \in E_{+}}(g(u)-g(v))^{2}}{\sum_{v \in V}(g(v))^{2} d_{v}} \\
& \geq \frac{\left(\sum_{u \sim v}\left|(g(u))^{2}-(g(v))^{2}\right|\right)^{2}}{\left(\sum_{v}(g(v))^{2} d_{v}\right) \cdot\left(2 \sum_{v}(g(v))^{2} d_{v}-W \sum_{v}(g(v))^{2} d_{v}\right)}
\end{aligned}
$$

Proof continues

Rewriting the nominator just as in the previous proof, simple factorization of the denominator gives

$$
\begin{aligned}
W & \geq \frac{\left(\sum_{i}\left|\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2}\right| \cdot\left|C_{i}\right|\right)^{2}}{(2-W)\left(\sum_{v}(g(v))^{2}\right)^{2} d_{v}} \\
& \geq \frac{\left(\sum_{i}\left|\left(g\left(v_{i}\right)\right)^{2}-\left(g\left(v_{i+1}\right)\right)^{2}\right| \cdot \alpha \sum_{j>i} d_{j}\right)^{2}}{(2-W)\left(\sum_{v}(g(v))^{2}\right)^{2} d_{v}} \\
& =\frac{\alpha^{2}}{2-W}
\end{aligned}
$$

Intermediate result: $W \geq \frac{\alpha^{2}}{2-W}$

$$
\Rightarrow W^{2}-2 W+\alpha^{2} \leq 0
$$

Solving the zeroes gives $W \geq 1-\sqrt{1-\alpha^{2}}$.
By definitions of W and α, we have $\lambda_{1}>W$ and $\alpha \geq h_{G}$. Hence we have proved the theorem $\lambda_{1}>1-\sqrt{1-h_{G}^{2}}$. Note that

$$
\frac{h_{G}^{2}}{2}<1-\sqrt{1-h_{G}^{2}}
$$

whenever $h_{G}>0$ (i.e., for any connected graph), meaning that this is always an improvement to the previous lower bound.

Constructional "corollary"

In a graph G with eigfn f associated with λ_{1}, define for each $v \in V$

$$
C_{v}=\{\{u, w\} \in E(G) \mid f(u) \leq f(v)<f(w)\}
$$

and

$$
\alpha=\min _{v}\left|C_{v}\right| \cdot \min \left\{\sum_{\substack{u \\ f(u) \leq f(v)}} d_{u}, \sum_{\substack{u \\ f(u)>f(v)}} d_{u}\right\}^{-1}
$$

Then $\lambda_{1}>1-\sqrt{1-\alpha^{2}}$.

Lower bound on λ_{1}

For a connected simple graph $G, h_{G} \geq \frac{2}{\operatorname{vol} G}$.
From Cheegers inequality, $2 h_{G} \geq \lambda_{1}>\frac{h_{G}^{2}}{2}$, we have

$$
\lambda_{1}>\frac{1}{2}\left(\frac{2}{\operatorname{vol} G}\right)^{2}
$$

As vol $G=2|E(G)| \leq n(n-1) \leq n^{2}$, we get a lower bound

$$
\lambda_{1} \geq \frac{2}{n^{4}}
$$

