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Among all closed curves of length ¢, which one encloses the
maximum area ?

For graphs : separator problems (vertex and edge cuts ) — relations
between the cut sizes and the sizes of the separated parts




VOLUME AND BOUNDARY

Notation: graph G = (V, E(G)),setS C V, |[V|=n
Volume: vol S = Z d,

veS

Edge boundary : 0S5 = {{u,v} € E(G) |u € S,v & S}
Vertex boundary : 6S={v ¢ S| {u,v} € E(G),u € S}




Given a fixed integer m, find a subset S with m < vol S < vol S s.t.

1. the boundary 0S5 = {{u,v} € E(G) | u € S,v ¢ S} contains as
few edges as possible

2. the boundary 0S = {v ¢ S | {u,v} € E(G),u € S} contains as
few vertices as possible




05
min {VOI S, vol 5}

hg = min
S

From the definition, we get for S s.t. vol S < vol S that
’8S| > ha -vol S.

Also, GG is connected iff hg > 0.




95|

gg = min 05] Regular graphs: gg(S) =

s min{vol S,vol S} min{|S|, | S|}

Definition: (volume replaced by unit measure)

Jdc = min ’55’
96 =N min{[S],15]}




Setup for the proof:
e ('Is a cut that achieves h¢

e (' splits V into sets A and B

( 1

m, |fU€A,

e Definition: f(v) = ¥
1

If B
.\ volB’ ve







Using the definition of \; with definitions of vol S, C and f, we get the
result. First we simply “partition” the expression using A and B:

D)= F)P+ D> (flu) = fF)*+ > (f(u) = f(v)?

ucA, ucA uweB

S (f()2dy + > (f(0)*dy

vEA vEB




We use the definitions of f and vol:

> SR 2+0+0
volA  volB

ucA,veB

dy dy
Z (vol A)2 ; (vol B)?

vEA

1 1\’
©] (VO|A i voIB)

-vol B

-vol A
(vol A)? Vo +(voIB)2

1 1
= 1 (voIA i voIB)




Setup for proof:

e vertex labels vy, vs,...,v, such that f(v;) < f(vi11)
1<i<n-1)

o wlog. > dy> ) d,
f(v)<0 f(v)=0
o cuts C; = {{v;,n} € E(G) |2<j<i<k<n},1<i<n




. C;
Definition: &« = min il

tsesn min { Zd]‘, Zd]}

G<i  §>i
By definition o > hg (divisors are the volumes of the parts)
Vi={veV][f(v)=0;
Ei ={{u,v} € E(G)|ueVi,veV}

f(’U), ifUGV—F)

g(v) = .
0, otherwise




For any v € V, it holds for f that

(a lemma from the previous chapter)




Substituting A\; = () and summing over V.
1

Moo= o M;(f(v)—f(u)) (1)
dofw)y > (f) = fw)
veVL {u,v}€E+

p— A
> (f) ds -

because for any subset S C V, we have
Mf)ds = )Y (f(v) = f(u)
M(f()Pde = f(v) ) (f(v) = f(u)
MDY C(f)de = > )Y (F0) = f(w)

vES veES U~V




From the defs of g, V. and £, (as (f(u))? > 0 and g(v) > f(v)),

St S (F) - fw)

veVy {u,v}eE

A= 5 (A)
> (fw) de
ST ((f(0)? = fu) f(w))
{u,v}€+E+

> (9(w) = g(v)’
S {u,v}eE . (*)
> (9() ds




Using the Cauchy-Schwarz inequality (3" z;v;:)* < (3" 2%)(>_ y?) with
zi = |g(u) — g(v)| and y; = g(u) + g(v), we get

S (9w +g)t Y (g(w) — g(v)?

A {u,v}eb . {u,v}ebE (*)
2 2
> (g(w) +g(v)) > (9(v))7d,
{U,U}€E+ veV

'V
e
2
S




Now using (a + b)(a — b) = a® — b*, we get

> (g(w) = g(v)]) (g(w) + g(v))

u~v

A1

1V

Vv




Now from the definition of C; and “partitioning” the edges to “steps”
over the cuts C;, we continue

(Z (9(w)” - <g<v>>2>2

unr~v

2 (Z <g(v))2dv>2

v

<Z [(g(v:))* = (9(vit1))?] - |C’i|>




Using the definition of o together with the fact that
Z d, > Z d, and the vertex ordering, we get

f(v)<0 f(v)>0
(Z (9(00)? — (g(v342))? OZ)Q
e 2(;@(@))%)2
(X (0000 = (g(vi)) azd;,f
Ay




as when we multiply the nominator “open”, all but one of the
(g(viﬂ))2 cancel out, appearing both positive and negative, except
for once for j =7 + 1, which leaves the same summation than we
have in the denumerator.




Now we simply take out o® and use the previous observation and the
definition of o to complete the proof:




Putting together the lemma and the theorem, we have

h2
2ha > A\ > 76?




From the proof of the previous theorem we have \; = (A) and we
define W = (x):

D) Y (flo) = f(uw)

\ veVy {u,v}eE L
1 p—
> (f)d,
veV,L )
Y (9(w) —g(v))
{u,v}ekE




Again we extend and use some already familiar tricks (plugging in
the def. of W itself):

'V
I
2
S




Rewriting the nominator just as in the previous proof, simple
factorization of the denominator gives

Vv




= W?2 —2W + a® <0.

Solving the zeroes gives W > 1 — V1 — a?.

By definitions of W and «, we have A\; > W and o > hg. Hence we
have proved the theorem \; > 1— /1 — hZ%. Note that

h2
7G<1—\/1—h%;

whenever hg > 0 (i.e., for any connected graph), meaning that this is
always an improvement to the previous lower bound.




In a graph GG with eigfn f associated with A\, define for eachv € V

Cy = {{u,w} € E(G) | f(u) < f(v) < f(w)}

and

~1
a:mgn]Cv]-min{ Z dy, Z du} :

flu)<f(v) f(u)>f(v)

Then \; > 1 —+v1 — a2




2
vol G’

: . h?
From Cheegers inequality, 2hg > Ay > 76; we have

1/ 2 \?
)\1>§<VOIG>'

As volG = 2|E(G)| < n(n — 1) < n?, we get a lower bound

For a connected simple graph G, hg >




