Eigenvalues and Random Walks
 (section 1.5 of "Spectral Graph Theory" by Fan Chung)

Weighted (undirected) graphs: we have a weight function $\mathrm{w}: V \times V \rightarrow \mathrm{R}$ satisfying
(a) $\mathrm{w}(u, v)=\mathrm{w}(v, u)$
(b) $\mathrm{w}(u, v) \geq 0$ and if u and v are not adjacent, $\mathrm{w}(u, v)=0$.

Then the degree d_{v} of a vertex v is defined by:
$d_{v}=\sum_{u} \mathrm{~W}(u, v)$
$\operatorname{vol} G=\sum_{v} d_{v}$
The normalized Laplacian of G is still defined as $T^{-1 / 2} L T^{-1 / 2}$, so we have

$$
(u, v)=\begin{array}{ll}
1-\mathrm{w}(v, v) / d_{v}, & \text { if } u=v \\
-\mathrm{w}(u, v) /\left(d_{u} d_{v}\right)^{1 / 2}, & \text { otherwise }
\end{array}
$$

The Rayleigh quotient characterization for the eigenvalues can be readily generalized for weighted graphs.

Given a weighted graph G, we can define a random walk on it in a natural way, by specifying the transition probabilities:
$P(u, v)=\mathrm{w}(u, v) / d_{u}$
Clearly, $\sum_{v} P(u, v)=1$.
For our Markov chain, if the initial distribution is $f: V \rightarrow R, \sum_{v} f(v)=1$, the distribution after k steps is given by $f P^{k}$.

We call a Markov chain ergodic if there is a unique stationary distribution $\pi(v)$ satisfying
$\lim f P^{k}(v)=\pi(v)$
for any initial distribution f.

From the theory of finite Markov chains we know that the necessary and sufficient conditions for the ergodicity of P are:
(i) irreducibility (for any u, v, there exists s, such that $P^{s}(u, v)>0$)
(ii) aperiodicity $\left(\operatorname{GCD}\left\{s: P^{s}(u, u)>0\right\}=1\right.$, which is a communicating class property)

It is easy to see that these two properties can be conveniently stated in the spectral terms. This is what we have for undirected graphs:
irreducibility is equivalent to the condition that G is connected, that is, $\lambda_{1}>0$.
aperiodicity is equivalent to the condition that G is not bipartite, that is, $\lambda_{n-1}<2$.

A major problem of interest is the convergence rate of a given ergodic random walk:
Given an arbitrary initial distribution f, how many steps s are required for $f P^{s}$ to be close to the stationary distribution?

As we will see shortly, the answer can be given in the terms of "spectral gap", determined by λ_{1} and λ_{n-1}.

We start with the L_{2}-norm convergence: $\left\|f P^{s}-\pi\right\|_{2}$.
Note that $P=T^{-1} A=T^{-1 / 2}(I-) T^{1 / 2}$.
The stationary distribution must satisfy $\pi P=\pi$ (if $a_{s} \rightarrow \pi$, then $a_{s} P \rightarrow \pi P$).
Since $(1 T) P=1 A=\left(d_{1}, \ldots, d_{n}\right)=1 T$, we see that $\pi=(1 / \mathrm{vol} G)\left(d_{1}, \ldots, d_{n}\right)$ is a natural candidate for the stationary distribution.

Let $\left\{\varphi_{i}\right\}$ be the orthonormal eigenbasis of ℓ, where φ_{i} is associated with λ_{i}. Given an initial distribution f, we write $f T^{-1 / 2}=\sum_{i} a_{i} \varphi_{i}$.

We know that $\varphi_{0}=(\operatorname{vol} G)^{-1 / 2} 1 T^{1 / 2}$, so $a_{0}=(\operatorname{vol} G)^{-1 / 2}$.
Then we have:
$\left\|f P^{s}-\pi\right\|=\left\|f P^{s}-(1 / \mathrm{vol} G) 1 T\right\|=\left\|f P^{s}-a_{0} \varphi_{0} T^{1 / 2}\right\|=$
$\left\|f T^{-1 / 2}(I-\ell)^{s} T^{1 / 2}-a_{0} \varphi_{0} T^{1 / 2}\right\|=\left\|\left(\sum_{i} a_{i} \varphi_{i}\right)(I-\ell)^{s} T^{1 / 2}-a_{0} \varphi_{0} T^{1 / 2}\right\|=$
(since 2 is symmetric, $\varphi_{i} \ell=\lambda_{i} \varphi_{i}$)

$$
\begin{aligned}
& =\left\|\sum_{i>0} a_{i}\left(1-\lambda_{i}\right)^{s} \varphi_{i} T^{1 / 2}\right\|=\left\|\left(\sum_{i>0} a_{i}\left(1-\lambda_{i}\right)^{s} \varphi_{i}\right) T^{1 / 2}\right\| \leq \\
& \left(\left\|\left(x_{1}, \ldots, x_{n}\right) T^{1 / 2}\right\|=\left\|\left(x_{1} d_{1}^{1 / 2}, \ldots, x_{n} d_{n}^{1 / 2}\right)\right\| \leq d_{\max }^{1 / 2}\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|\right) \\
& \leq d_{\max }^{1 / 2}\left\|\sum_{i>0} a_{i}\left(1-\lambda_{i}\right)^{s} \varphi_{i}\right\| \leq d_{\max }^{1 / 2}\left(\sum_{i>0} a_{i}^{2}\left(1-\lambda_{i}\right)^{2 s}\right)^{1 / 2} \leq \\
& \leq d_{\max }^{1 / 2}\left(\sum_{i>0} a_{i}^{2}\right)^{1 / 2} \max _{i>0}\left|1-\lambda_{i}\right|^{s}=
\end{aligned}
$$

$$
\text { (define } \lambda^{\prime} \text { as } \lambda_{1} \text { if }\left(1-\lambda_{1}\right) \geq\left(\lambda_{n-1}-1\right) \text { or as }\left(2-\lambda_{n-1}\right) \text { otherwise) }
$$

$$
=d_{\max }^{1 / 2}\left(\sum_{i>0} a_{i}^{2}\right)^{1 / 2}\left|1-\lambda^{\prime}\right|^{s} \leq
$$

$$
\left(\sum_{i} a_{i}^{2}=\left\|f T^{-1 / 2}\right\|^{2}=\sum_{i}\left(f_{i}^{2} / d_{i}\right) \leq\left(\sum_{i} f_{i}\right) / d_{\min }=1 / d_{\min }\right)
$$

$$
\leq\left(d_{\max } / d_{\min }\right)^{1 / 2}\left|1-\lambda^{\prime}\right|^{s} \leq \exp \left(-s \lambda^{\prime}\right)\left(d_{\max } / d_{\min }\right)^{1 / 2}\left(\text { since }\left(1-\lambda^{\prime}\right) \leq \exp \left(-\lambda^{\prime}\right) \text { on }[0,1]\right)
$$

How many steps do we need to guarantee $\left\|f P^{s}-\pi\right\| \leq \varepsilon$?
$s \geq\left(1 / \lambda^{\prime}\right) \ln \left(1 / \varepsilon \cdot\left(d_{\max } / d_{\min }\right)^{1 / 2}\right)$

We can eliminate the dependence on λ_{n-1} by modifying the random walk slightly. Let's modify the weights in the following way:
$\mathrm{w}^{\prime}(v, v)=\mathrm{w}(v, v)+c d_{v}$, where $c=\left(\lambda_{1}+\lambda_{n-1}\right) / 2-1$
(note that we have $c>0$ if $\left(1-\lambda_{1}\right)<\left(\lambda_{n-1}-1\right)$)
and $\mathrm{w}^{\prime}(u, v)=\mathrm{w}(u, v)$ if $u \neq v$.
Then we have $\lambda_{k}{ }^{\prime}=\lambda_{k} /(1+c)$.
So, $1-\lambda_{1}{ }^{\prime}=\lambda_{n-1}{ }^{\prime}-1=\left(\lambda_{n-1}-\lambda_{1}\right) /\left(\lambda_{1}+\lambda_{n-1}\right)$.
This is called a lazy random walk.

A stronger notion of convergence: the relative pointwise distance.

We know that every row of matrix P of an ergodic random walk converges to π.

We define the relative pointwise distance as:
$\Delta(s)=\max _{x, y}\left|P^{s}(y, x)-\pi(x)\right| / \pi(x)$
Similar to the above, we can show that
$\Delta(s) \leq \exp \left(-s \lambda^{\prime}\right)\left(\operatorname{vol} G / d_{\text {min }}\right)$
Why is the relative pointwise distance a stronger notion of convergence than the L_{2}-norm one? Given an initial distribution f, we have
$\left|f P^{s}(x)-\pi(x)\right| / \pi(x) \leq \sum_{y} f(y)\left(\left|P^{s}(y, x)-\pi(x)\right| / \pi(x)\right) \leq \sum_{y} f(y) \Delta(s) \leq \Delta(s)$
So, we obtained $\left\|f P^{s}-\pi\right\|_{2} \leq \Delta(s)\|\pi\|_{2}$

The Total Variation distance.
$\Delta_{\mathrm{TV}}(\mathrm{s})=1 / 2 \max _{y} \sum_{x}\left|P^{s}(y, x)-\pi(x)\right|$
(half of the L_{1}-distance)
Easy to see that $\Delta_{\mathrm{TV}}(s) \leq \Delta(s) / 2$.

The case of directed graphs.
We can show the following:
If G is a strongly connected directed graph on n vertices, then we can define a lazy walk, such that after at most $t \geq 2 / \lambda_{1}\left(\left(-\ln \varphi_{\min }\right)+2 c\right)$ steps, we have
$\Delta_{\mathrm{TV}}(t) \leq \exp (-c) / 2$,
where φ is the normalized Perron vector.
A subtlety: for directed graphs, the Perron vector components and eigenvalues can be exponentially small in n. However, for certain "well-behaving" classes of graphs those values are of the order of $1 / \operatorname{poly}(n)$. For instance, that holds true for Eulerian graphs (in-degree of each vertex is equal to its out-degree).

