
Eigenvalues and Random Walks 
(section 1.5 of “Spectral Graph Theory” by Fan Chung) 
 
 
Weighted (undirected) graphs: we have a weight function w: V x V → R satisfying 
 
(a) w(u, v) = w(v, u) 
(b) w(u, v) ≥ 0  and if u and v are not adjacent, w(u, v) = 0. 
 
Then the degree dv of a vertex v is defined by: 
 
dv = ∑u w(u, v) 
vol G = ∑v dv
 
The normalized Laplacian of G is still defined as T–1/2LT–1/2, so we have 
 
                 1 – w(v, v) / dv,            if u = v 
(u, v) =  

                 – w(u, v) / (du dv)1/2,    otherwise 
 
The Rayleigh quotient characterization for the eigenvalues can be readily generalized for 
weighted graphs. 



Given a weighted graph G, we can define a random walk on it in a natural way, by specifying 
the transition probabilities: 
 
P(u, v) = w(u, v) / du
 
Clearly, ∑v P(u, v) = 1. 
 
For our Markov chain, if the initial distribution is  f: V → R, ∑v f(v) = 1, the distribution after k 
steps is given by fPk. 
 
We call a Markov chain ergodic if there is a unique stationary distribution π(v) satisfying 
 
lim fPk(v) = π(v) 
 
for any initial distribution f. 



From the theory of finite Markov chains we know that the necessary and sufficient conditions 
for the ergodicity of P are: 
 
(i)  irreducibility (for any u, v, there exists s, such that Ps(u, v) > 0) 
(ii) aperiodicity  (GCD{s: Ps(u, u) > 0} = 1, which is a communicating class property) 
 
It is easy to see that these two properties can be conveniently stated in the spectral terms. This is 
what we have for undirected graphs: 
 
irreducibility is equivalent to the condition that G is connected, that is, λ1 > 0. 
 
aperiodicity is equivalent to the condition that G is not bipartite, that is, λn-1 < 2. 
 
 
A major problem of interest is the convergence rate of a given ergodic random walk: 
 
Given an arbitrary initial distribution f, how many steps s are required for fPs to be close to the 
stationary distribution? 
 
As we will see shortly, the answer can be given in the terms of “spectral gap”, determined by λ1 
and λn-1. 



We start with the L2-norm convergence: || fPs – π ||2. 
 
Note that  P = T–1A = T–1/2(I – )T1/2. 
 
The stationary distribution must satisfy πP = π  (if as → π, then asP → πP). 
 
Since  (1T)P = 1A = (d1, …, dn) = 1T, we see that  π = (1/vol G) (d1, …, dn) is a natural candidate 
for the stationary distribution. 
 
Let {ϕi} be the orthonormal eigenbasis of , where ϕi is associated with λi. Given an initial 
distribution f, we write f T–1/2 = ∑i ai ϕi. 
 
We know that ϕ0 = (vol G)–1/2 1T1/2, so a0 = (vol G)–1/2. 
 
Then we have: 
 
|| fPs – π || = || fPs – (1/vol G) 1T || = || fPs – a0 ϕ0 T1/2 || = 
 
|| f T–1/2(I – )sT1/2  –  a0 ϕ0 T1/2 || = || (∑i ai ϕi) (I – )sT1/2  –  a0 ϕ0 T1/2 || = 



(since  is symmetric, ϕi  = λi ϕi) 
 
= || ∑i>0 ai (1 – λi)s ϕi T1/2 || = || (∑i>0 ai (1 – λi)s ϕi) T1/2 || ≤ 
 
( ||(x1, …, xn) T1/2 || = ||(x1 d1

1/2, …, xn dn
1/2)|| ≤ dmax

1/2 ||(x1, …, xn)|| ) 
 
≤ dmax

1/2 || ∑i>0 ai (1 – λi)s ϕi ||  ≤  dmax
1/2 ( ∑i>0 ai

2 (1 – λi)2s )1/2  ≤ 
 
≤ dmax

1/2 ( ∑i>0 ai
2)1/2 maxi>0 | 1 – λi |s = 

 
(define λ′ as λ1 if  (1 – λ1) ≥  (λn-1 – 1)  or as  (2 – λn-1)  otherwise) 
 
= dmax

1/2 ( ∑i>0 ai
2)1/2  | 1 – λ′ |s  ≤ 

 
(∑i ai

2 = || f T–1/2 ||2 = ∑i (fi
2/di) ≤ (∑i fi ) / dmin = 1/dmin ) 

 
≤  (dmax/dmin)1/2 

 | 1 – λ′ |s  ≤  exp(–sλ′) (dmax/dmin)1/2  (since (1 – λ′)  ≤  exp(–λ′)  on [0, 1]) 



How many steps do we need to guarantee  || fPs – π || ≤ ε ? 
 
s ≥ (1/λ′) ln( 1/ε ⋅ (dmax/dmin)1/2) 
 
 
We can eliminate the dependence on λn-1 by modifying the random walk slightly. Let’s modify 
the weights in the following way: 
 
w′(v, v) = w(v, v) + c dv, where  c = (λ1 + λn-1) / 2 – 1  
(note that we have c > 0 if (1 – λ1) < (λn-1 – 1)) 
and w′(u, v) = w(u, v)  if u ≠ v. 
 
Then we have  λk′ = λk / (1 + c). 
 
So, 1 – λ1′ = λn-1′ – 1 = (λn-1 – λ1) / (λ1 + λn-1). 
 
This is called a lazy random walk. 



A stronger notion of convergence: the relative pointwise distance. 
 
We know that every row of matrix P of an ergodic random walk converges to π. 
 
We define the relative pointwise distance as: 
 
∆(s) = maxx,y | Ps(y, x) – π(x) | / π(x) 
 
Similar to the above, we can show that 
 
∆(s)  ≤  exp(–sλ′) (vol G / dmin)
 
Why is the relative pointwise distance a stronger notion of convergence than the L2-norm one? 
Given an initial distribution f, we have 
 
|  fPs(x) – π(x) | / π(x)   ≤   ∑y f(y) (| Ps(y, x) – π(x) | / π(x))  ≤   ∑y f(y) ∆(s)  ≤  ∆(s) 
 
So, we obtained  || fPs – π ||2  ≤  ∆(s) ||π||2



The Total Variation distance. 
 
∆TV(s)  =  1/2 maxy ∑x | Ps(y, x) – π(x) | 
 
(half of the L1-distance) 
 
Easy to see that   ∆TV(s)  ≤  ∆(s) / 2. 



The case of directed graphs. 
 
We can show the following: 
 
If G is a strongly connected directed graph on n vertices, then we can define a lazy walk, such 
that after at most  t ≥ 2/λ1 ((– ln ϕmin) + 2c)  steps, we have 
 
∆TV(t) ≤  exp(–c)/2, 
 
where ϕ is the normalized Perron vector. 
 
A subtlety: for directed graphs, the Perron vector components and eigenvalues can be 
exponentially small in n. However, for certain “well-behaving” classes of graphs those values 
are of the order of  1 / poly(n). For instance, that holds true for Eulerian graphs (in-degree of 
each vertex is equal to its out-degree). 
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