Laplacians and Eigenvalues

Pekka Orponen

T-79.7001 Apr 3, 2006

The standard Laplacian

Graph G, vertices numbered $1, \ldots, n$. Degrees d_{1}, \ldots, d_{n}. Adjacency matrix A, degree matrix $T=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, incidence matrix E :
$E(u, e)= \begin{cases}+1, & \text { if } u \text { incident to } e=\{u, v\} \text { with orientation } e: u \rightarrow v, \\ -1, & \text { if } u \text { incident to } e=\{u, v\} \text { with orientation } e: v \rightarrow u, \\ 0, & \text { otherwise } .\end{cases}$
Standard Laplacian $L=E E^{*}$:

$$
L(u, v)=\sum_{e} E(u, e) E(v, e)= \begin{cases}d_{u}, & \text { if } u=v, \\ -1, & \text { if } u \neq v, u \sim v, \\ 0, & \text { otherwise }\end{cases}
$$

Thus also $L=T-A$.

The normalised Laplacian

For k-regular G, natural to consider also normalised Laplacian

$$
\mathcal{L}=\frac{1}{k} L=I-\frac{1}{k} A .
$$

In general, define normalised incidence matrix S :
$S(u, e)= \begin{cases}+1 / \sqrt{d_{u}}, & \text { if } u \text { incident to } e=\{u, v\} \text { with orientation } e: u \rightarrow v, \\ -1 / \sqrt{d_{u}}, & \text { if } u \text { incident to } e=\{u, v\} \text { with orientation } e: v \rightarrow u, \\ 0, & \text { otherwise. }\end{cases}$
Then define normalised Laplacian $\mathcal{L}=S S^{*}$:
$\mathcal{L}(u, v)=\sum_{e} S(u, e) S(v, e)= \begin{cases}1, & \text { if } u=v, \\ -1 / \sqrt{d_{u} d_{v}}, & \text { if } u \neq v, u \sim v, \\ 0, & \text { otherwise. }\end{cases}$

Relation to standard Laplacian

Denote

$$
T^{1 / 2}=\operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)
$$

Since for all vertices u, v in G :

$$
\mathcal{L}(u, v)=\frac{L(u, v)}{\sqrt{d_{u} d_{v}}}
$$

one obtains representation

$$
\mathcal{L}=T^{-1 / 2} L T^{-1 / 2}=I-T^{-1 / 2} A T^{-1 / 2} .
$$

[Note that

$$
\begin{aligned}
& L T^{-1 / 2}(u, v)=\sum_{w} L(u, w) T^{-1 / 2}(w, v)=L(u, v) \cdot \frac{1}{\sqrt{d_{v}}} \\
& \left.T^{-1 / 2} L(u, v)=\sum_{w} T^{-1 / 2}(u, w) L(w, v)=\frac{1}{\sqrt{d_{u}}} \cdot L(u, v) .\right]
\end{aligned}
$$

The Laplacian as operator

Consider an assignment of vertex potentials $g: V(G) \rightarrow \mathbb{R}$. Then:

$$
L g(u)=(T-A) g(u)=d_{u} \cdot g(u)-\sum_{v \sim u} g(v)=\sum_{v \sim u}(g(u)-g(v)) .
$$

For k-regular G, the normalised Laplacian yields:

$$
\mathcal{L} g(u)=\left(I-\frac{1}{k} A\right) g(u)=g(u)-\frac{1}{k} \sum_{v \sim u} g(v)=\frac{1}{k} \sum_{v \sim u}(g(u)-g(v)) .
$$

For general G, the normalised Laplacian yields:

$$
\begin{aligned}
\mathscr{L} g(u) & =\left(I-T^{-1 / 2} A T^{-1 / 2}\right) g(u) \\
& =g(u)-\sum_{v \sim u} \frac{g(v)}{\sqrt{d_{u} d_{v}}}=\frac{1}{\sqrt{d_{u}}} \sum_{v \sim u}\left(\frac{g(u)}{\sqrt{d_{u}}}-\frac{g(v)}{\sqrt{d_{v}}}\right) .
\end{aligned}
$$

This leads to the notion of normalised (harmonic) potentials:

$$
f(u)=T^{-1 / 2} g(u)=\frac{g(u)}{\sqrt{d_{u}}}
$$

Laplacian eigenvalues

Since \mathcal{L} is symmetric, all its eigenvalues are real. Consider an eigenvalue λ with associated eigenvector g :

$$
\begin{aligned}
\mathcal{L} g=\lambda g & \Longleftrightarrow\left(T^{-1 / 2} L T^{-1 / 2}\right) g=\lambda g \\
& \Longleftrightarrow L\left(T^{-1 / 2} g\right)=\lambda\left(T^{1 / 2} g\right) \\
& \Longleftrightarrow L f=\lambda T f \\
& \Longleftrightarrow\left(T^{-1} L\right) f=\lambda f
\end{aligned}
$$

Thus g is eigenvector of \mathcal{L} with eigenvalue λ
$\Longleftrightarrow f=T^{-1 / 2} g$ is eigenvector of $T^{-1} L$ with eigenvalue λ.
I.e. \mathcal{L} has same spectrum as $T^{-1} L$, with "normalised" eigenvectors.

$$
\begin{gathered}
T^{-1} L=T^{-1} T-T^{-1} A=I-T^{-1} A, \\
T^{-1} L(u, v)= \begin{cases}1, & \text { if } u=v, \\
-1 / d_{u}, & \text { if } u \neq v, u \sim v, \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

Rayleigh quotient

$$
\begin{aligned}
\frac{\langle g, \mathcal{L} g\rangle}{\langle g, g\rangle} & =\frac{\left\langle g, T^{-1 / 2} L T^{-1 / 2} g\right\rangle}{\langle g, g\rangle} \\
& =\frac{\left\langle T^{1 / 2} f, T^{-1 / 2} L f\right\rangle}{\left\langle T^{1 / 2} f, T^{1 / 2} f\right\rangle} \\
& =\frac{\langle f, L f\rangle}{\langle f, T f\rangle} \\
& =\frac{\sum_{u} f(u) \sum_{v \sim u}(f(u)-f(v))}{\sum_{u} f(u) \cdot d_{u} f(u)} \\
& =\frac{\sum_{u \sim v}\left(f(u)^{2}+f(v)^{2}-2 f(u) f(v)\right)}{\sum_{u} f(u)^{2} d_{u}} \\
& =\frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}}
\end{aligned}
$$

Variational characterisations

Enumerate eigenvalues of \mathcal{L} as $\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1}$. Then:

$$
\lambda_{0}=\inf _{g} \frac{\langle g, \mathcal{L} g\rangle}{\langle g, g\rangle}=\inf _{f} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}}=0 .
$$

Clearly $\lambda_{0}=0$ has eigenvector $f \equiv$ 1, i.e.
$g=T^{1 / 2} 1=\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$.
The next eigenvalue $\lambda_{G}=\lambda_{1}$ is given by:

$$
\lambda_{1}=\inf _{g \perp T^{1 / 2}} \frac{\langle g, \mathcal{L} g\rangle}{\langle g, g\rangle}=\inf _{f \perp T 1} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}} .
$$

Note that

$$
f \perp T 1 \Longleftrightarrow \sum_{u} f(u) d_{u}=0 .
$$

Variational characterisations (cont'd)

The eigenvalue λ_{1} can also be characterised as follows (exercise):

$$
\lambda_{1}=\inf _{f} \sup _{t} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u}(f(u)-t)^{2} d_{u}}
$$

and

$$
\lambda_{1}=\inf _{f} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u}(f(u)-\bar{f})^{2} d_{u}},
$$

where

$$
\bar{f}=\frac{\sum_{u} f(u) d_{u}}{\sum_{u} d_{u}}
$$

Denoting $\sum_{u} d_{u}=\operatorname{vol} G$, one has yet another characterisation:

$$
\lambda_{1}=\operatorname{vol} G \cdot \inf _{f \neq 0} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u: v}(f(u)-f(v))^{2} d_{u} d_{v}}
$$

where $\sum_{u: v}$ denotes summation over all unordered pairs of vertices u, v in G with possibly $u=v$.

Variational characterisations (cont'd)

In general,

$$
\begin{aligned}
\lambda_{k} & =\inf _{f \perp T P_{k-1}} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}} \\
& =\inf _{f \neq 0} \sup _{g \in P_{k-1}} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u}(f(u)-g(u))^{2} d_{u}},
\end{aligned}
$$

where P_{k-1} denotes the subspace spanned by eigenvectors associated to eigenvalues $\lambda_{0} \ldots \lambda_{k-1}$.

Finally,

$$
\lambda_{n-1}=\sup _{f} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}}
$$

Basic properties

Graph G with n vertices.

1. $\sum_{i} \lambda_{i} \leq n$, with equality iff G has no isolated vertices.
2. $\lambda_{1} \leq n /(n-1)$ for $n \geq 2$, with equality iff G is complete. $\lambda_{n-1} \geq n /(n-1)$, unless G has isolated vertices.
3. $\lambda_{1} \leq 1$, unless G is complete.
4. $\lambda_{1}>0$, if G is connected.

More generally, if i is smallest index for which $\lambda_{i}>0$, then G has exactly i connected components.
5. $\lambda_{i} \leq 2$ for all i, with $\lambda_{n-1}=2$ iff G has a nontrivial bipartite component.
6. The spectrum of G is the union of the spectra of its connected components.

Bipartite graphs

The following are equivalent:

1. G is bipartite.
2. G has i connected components, and $\lambda_{(n-1)-j}=2$ for $j=1, \ldots, i$.
3. For each λ_{i}, also $2-\lambda_{i}$ is eigenvalue of G.

A lower bound for λ_{1}

Diameter of graph = max shortest-path distance between any two vertices.

Theorem. For a connected graph G with diameter D,

$$
\lambda_{1} \geq \frac{1}{D \mathrm{vol} G}
$$

Proof.
Choose harmonic potential f associated to λ_{1}.
Choose vertex u_{0} with $\left|f\left(u_{0}\right)\right|=$ max.
Since $f \perp T 1$, there is some vertex v_{0} s.th. $f\left(u_{0}\right) f\left(v_{0}\right)<0$. Denote shortest path connecting u_{0} and v_{0} by P.

A lower bound for λ_{1} (cont'd)

Then:

$$
\begin{aligned}
\lambda_{1} & =\frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{u} f(u)^{2} d_{u}} \\
& \geq \frac{\sum_{\{u, v\} \in P}(f(u)-f(v))^{2}}{f\left(u_{0}\right)^{2} \cdot \sum_{u} d_{u}} \\
& \geq \frac{\frac{1}{D}\left(f\left(u_{0}\right)-f\left(v_{0}\right)\right)^{2}}{f\left(u_{0}\right)^{2} \cdot \operatorname{vol} G} \\
& \geq \frac{1}{D \operatorname{vol} G} .
\end{aligned}
$$

The next-to-last inequality follows by Cauchy-Schwartz:

$$
\sum_{\{u, v\} \in P}(f(u)-f(v))^{2} \geq \frac{1}{D}\left[\sum_{\{u, v\} \in P}(f(u)-f(v))\right]^{2}=\frac{1}{D}\left(f\left(u_{0}\right)-f\left(v_{0}\right)\right)^{2}
$$

Miscellaneous

Proposition. Let f be a harmonic potential associated to eigenvalue λ. Then for any vertex u,

$$
\frac{1}{d_{u}} \sum_{v \sim u}(f(u)-f(v))=\lambda f(u) .
$$

Proof. Follows by comparing coefficients in $T^{-1} L f=\lambda f$.
Theorem. For a k-regular graph with n vertices,

$$
\max _{i>0}\left|1-\lambda_{i}\right| \geq \sqrt{\frac{n-k}{(n-1) k}}
$$

Weighted graphs

Given graph G with vertex set V, weight function $w: V \times V \rightarrow \mathbb{R}$ satisfying:

- $w(u, v)=w(v, u)$ for all u, v,
- $w(u, v) \geq 0$ for all u, v,
- $w(u, v)>0$ only if $u \sim v$ in G.

Define:

- degree of vertex $u: d_{u}=\sum_{v} w(u, v)$.
- volume of graph $G: \operatorname{vol} G=\sum_{u} d_{u}$.

Laplacians of weighted graphs

Standard Laplacian:

$$
L(u, v)= \begin{cases}d_{u}-w(u, u), & \text { if } u=v, \\ -w(u, v), & \text { if } u \neq v, u \sim v, \\ 0, & \text { otherwise }\end{cases}
$$

Thus,

$$
L f(u)=\sum_{v \sim u}(f(u)-f(v)) w(u, v)
$$

Normalised Laplacian: $\mathcal{L}=T^{-1 / 2} L T^{-1 / 2}$.
Thus,

$$
\mathcal{L}(u, v)= \begin{cases}1-\frac{w(u, u)}{d_{u}}, & \text { if } u=v, \\ -\frac{w(u, v)}{\sqrt{d_{u} d_{v}}}, & \text { if } u \neq v, u \sim v, \\ 0, & \text { otherwise. }\end{cases}
$$

Variational characterisations

The previous characterisations still hold, mutatis mutandis. E.g.

$$
\begin{aligned}
\lambda_{G} & :=\lambda_{1}=\inf _{g \perp T^{1 / 2}} \frac{\langle g, \mathcal{L} g\rangle}{\langle g, g\rangle} \\
& =\inf _{\sum f(u) d_{u}=0} \frac{\sum_{u \sim v}(f(u)-f(v))^{2} w(u, v)}{\sum_{u} f(u)^{2} d_{u}} .
\end{aligned}
$$

Contractions

A contraction of a graph is formed by identifying two distinct vertices u, v into a single vertex u^{*}. The weights of edges incident to u^{*} are determined as follows:

$$
\begin{aligned}
w\left(x, u^{*}\right) & =w(x, u)+w(x, v) \\
w\left(u^{*}, u^{*}\right) & =w(u, u)+w(v, v)+2 w(u, v)
\end{aligned}
$$

Theorem. If graph H is formed by contractions from graph G, then

$$
\lambda_{G} \leq \lambda_{H} .
$$

