
T–79.7001 Laplacians and Eigenvalues

Laplacians and Eigenvalues

Pekka Orponen

T–79.7001 Apr 3, 2006

PO 3 Apr 2006



T–79.7001 Laplacians and Eigenvalues

The standard Laplacian

Graph G, vertices numbered 1, . . . ,n. Degrees d1, . . . ,dn.
Adjacency matrix A, degree matrix T = diag(d1, . . . ,dn), incidence
matrix E :

E(u,e) =


+1, if u incident to e = {u,v} with orientation e : u → v ,

−1, if u incident to e = {u,v} with orientation e : v → u,

0, otherwise.

Standard Laplacian L = EE∗:

L(u,v) = ∑
e

E(u,e)E(v ,e) =


du, if u = v ,

−1, if u 6= v ,u ∼ v ,

0, otherwise.

Thus also L = T −A.
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The normalised Laplacian

For k -regular G, natural to consider also normalised Laplacian

L =
1
k

L = I− 1
k

A.

In general, define normalised incidence matrix S:

S(u,e) =


+1/

√
du, if u incident to e = {u,v} with orientation e : u → v ,

−1/
√

du, if u incident to e = {u,v} with orientation e : v → u,

0, otherwise.

Then define normalised Laplacian L = SS∗:

L(u,v) = ∑
e

S(u,e)S(v ,e) =


1, if u = v ,

−1/
√

dudv , if u 6= v ,u ∼ v ,

0, otherwise.
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Relation to standard Laplacian

Denote

T 1/2 = diag(
√

d1, . . . ,
√

dn).

Since for all vertices u, v in G:

L(u,v) =
L(u,v)√

dudv
,

one obtains representation

L = T−1/2LT−1/2 = I−T−1/2AT−1/2.

[Note that

LT−1/2(u,v) = ∑
w

L(u,w)T−1/2(w ,v) = L(u,v) · 1√
dv

T−1/2L(u,v) = ∑
w

T−1/2(u,w)L(w ,v) =
1√
du
·L(u,v).]
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The Laplacian as operator

Consider an assignment of vertex potentials g : V (G)→ R. Then:

Lg(u) = (T −A)g(u) = du ·g(u)− ∑
v∼u

g(v) = ∑
v∼u

(g(u)−g(v)).

For k -regular G, the normalised Laplacian yields:

Lg(u) = (I− 1
k

A)g(u) = g(u)− 1
k ∑

v∼u
g(v) =

1
k ∑

v∼u
(g(u)−g(v)).

For general G, the normalised Laplacian yields:

Lg(u) = (I−T−1/2AT−1/2)g(u)

= g(u)− ∑
v∼u

g(v)√
dudv

=
1√
du

∑
v∼u

(
g(u)√

du
− g(v)√

dv
).

This leads to the notion of normalised (harmonic) potentials:

f (u) = T−1/2g(u) =
g(u)√

du
.
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Laplacian eigenvalues

Since L is symmetric, all its eigenvalues are real. Consider an
eigenvalue λ with associated eigenvector g:

Lg = λg ⇐⇒ (T−1/2LT−1/2)g = λg

⇐⇒ L(T−1/2g) = λ(T 1/2g)
⇐⇒ Lf = λTf

⇐⇒ (T−1L)f = λf .

Thus g is eigenvector of L with eigenvalue λ

⇐⇒ f = T−1/2g is eigenvector of T−1L with eigenvalue λ.
I.e. L has same spectrum as T−1L, with “normalised” eigenvectors.

T−1L = T−1T −T−1A = I−T−1A,

T−1L(u,v) =


1, if u = v ,

−1/du, if u 6= v ,u ∼ v ,

0, otherwise.
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Rayleigh quotient

〈g,Lg〉
〈g,g〉

=
〈g,T−1/2LT−1/2g〉

〈g,g〉

=
〈T 1/2f ,T−1/2Lf 〉
〈T 1/2f ,T 1/2f 〉

=
〈f ,Lf 〉
〈f ,Tf 〉

= ∑u f (u)∑v∼u(f (u)− f (v))
∑u f (u) ·duf (u)

= ∑u∼v(f (u)2 + f (v)2−2f (u)f (v))
∑u f (u)2du

= ∑u∼v(f (u)− f (v))2

∑u f (u)2du
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Variational characterisations

Enumerate eigenvalues of L as λ0 ≤ λ1 ≤ ·· · ≤ λn−1. Then:

λ0 = inf
g

〈g,Lg〉
〈g,g〉

= inf
f

∑u∼v(f (u)− f (v))2

∑u f (u)2du
= 0.

Clearly λ0 = 0 has eigenvector f ≡ 1, i.e.
g = T 1/21 = (

√
d1, . . . ,

√
dn).

The next eigenvalue λG = λ1 is given by:

λ1 = inf
g⊥T 1/21

〈g,Lg〉
〈g,g〉

= inf
f⊥T1

∑u∼v(f (u)− f (v))2

∑u f (u)2du
.

Note that

f⊥T1 ⇐⇒ ∑
u

f (u)du = 0.
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Variational characterisations (cont’d)

The eigenvalue λ1 can also be characterised as follows (exercise):

λ1 = inf
f

sup
t

∑u∼v(f (u)− f (v))2

∑u(f (u)− t)2du

and

λ1 = inf
f

∑u∼v(f (u)− f (v))2

∑u(f (u)− f̄ )2du
,

where

f̄ = ∑u f (u)du

∑u du
.

Denoting ∑u du = vol G, one has yet another characterisation:

λ1 = vol G · inf
f 6=0

∑u∼v(f (u)− f (v))2

∑u:v(f (u)− f (v))2dudv
,

where ∑u:v denotes summation over all unordered pairs of vertices u,
v in G with possibly u = v .
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Variational characterisations (cont’d)

In general,

λk = inf
f⊥TPk−1

∑u∼v(f (u)− f (v))2

∑u f (u)2du

= inf
f 6=0

sup
g∈Pk−1

∑u∼v(f (u)− f (v))2

∑u(f (u)−g(u))2du
,

where Pk−1 denotes the subspace spanned by eigenvectors
associated to eigenvalues λ0 . . .λk−1.

Finally,

λn−1 = sup
f

∑u∼v(f (u)− f (v))2

∑u f (u)2du
.
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Basic properties

Graph G with n vertices.

1. ∑i λi ≤ n, with equality iff G has no isolated vertices.

2. λ1 ≤ n/(n−1) for n ≥ 2, with equality iff G is complete.
λn−1 ≥ n/(n−1), unless G has isolated vertices.

3. λ1 ≤ 1, unless G is complete.

4. λ1 > 0, if G is connected.
More generally, if i is smallest index for which λi > 0, then G has
exactly i connected components.

5. λi ≤ 2 for all i , with λn−1 = 2 iff G has a nontrivial bipartite
component.

6. The spectrum of G is the union of the spectra of its connected
components.
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Bipartite graphs

The following are equivalent:

1. G is bipartite.

2. G has i connected components,
and λ(n−1)−j = 2 for j = 1, . . . , i .

3. For each λi , also 2−λi is eigenvalue of G.
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A lower bound for λ1

Diameter of graph = max shortest-path distance between any two
vertices.

Theorem. For a connected graph G with diameter D,

λ1 ≥
1

D vol G
.

Proof.
Choose harmonic potential f associated to λ1.
Choose vertex u0 with |f (u0)|= max.
Since f⊥T1, there is some vertex v0 s.th. f (u0)f (v0) < 0. Denote
shortest path connecting u0 and v0 by P.
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A lower bound for λ1 (cont’d)

Then:

λ1 = ∑u∼v(f (u)− f (v))2

∑u f (u)2du

≥
∑{u,v}∈P(f (u)− f (v))2

f (u0)2 ·∑u du

≥
1
D (f (u0)− f (v0))2

f (u0)2 · vol G

≥ 1
D vol G

.

The next-to-last inequality follows by Cauchy-Schwartz:

∑
{u,v}∈P

(f (u)− f (v))2 ≥ 1
D

[
∑

{u,v}∈P

(f (u)− f (v))

]2

=
1
D

(f (u0)− f (v0))2.
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Miscellaneous

Proposition. Let f be a harmonic potential associated to eigenvalue
λ. Then for any vertex u,

1
du

∑
v∼u

(f (u)− f (v)) = λf (u).

Proof. Follows by comparing coefficients in T−1Lf = λf .

Theorem. For a k -regular graph with n vertices,

max
i>0

|1−λi | ≥

√
n− k

(n−1)k
.

PO 3 Apr 2006



T–79.7001 Laplacians and Eigenvalues

Weighted graphs

Given graph G with vertex set V , weight function w : V ×V → R
satisfying:

I w(u,v) = w(v ,u) for all u, v ,

I w(u,v)≥ 0 for all u, v ,

I w(u,v) > 0 only if u ∼ v in G.

Define:

I degree of vertex u: du = ∑v w(u,v).
I volume of graph G: vol G = ∑u du.
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Laplacians of weighted graphs

Standard Laplacian:

L(u,v) =


du−w(u,u), if u = v ,

−w(u,v), if u 6= v ,u ∼ v ,

0, otherwise.

Thus,

Lf (u) = ∑
v∼u

(f (u)− f (v))w(u,v).

Normalised Laplacian: L = T−1/2LT−1/2.

Thus,

L(u,v) =


1− w(u,u)

du
, if u = v ,

−w(u,v)√
dudv

, if u 6= v ,u ∼ v ,

0, otherwise.
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Variational characterisations

The previous characterisations still hold, mutatis mutandis. E.g.

λG := λ1 = inf
g⊥T 1/21

〈g,Lg〉
〈g,g〉

= inf
∑ f (u)du=0

∑u∼v(f (u)− f (v))2w(u,v)
∑u f (u)2du

.
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Contractions

A contraction of a graph is formed by identifying two distinct vertices u,
v into a single vertex u∗. The weights of edges incident to u∗ are
determined as follows:

w(x ,u∗) = w(x ,u)+w(x ,v)
w(u∗,u∗) = w(u,u)+w(v ,v)+2w(u,v).

Theorem. If graph H is formed by contractions from graph G, then

λG ≤ λH .
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