T-79.7001 Postgraduate Course in Theoretical Computer Science -Spring 2006

Vertex-partitions and the spectrum (Biggs sec. 8)

Martti Meri

Definitions colour-partition V_i : $V\Gamma = V_1 \cup V_2 \cup \ldots \cup V_l$, so that each $V_i (1 \le i \le l)$ contains no pair of adjacent vertices.

chromatic number $\nu(\Gamma)$ is the least natural number l for which such partition is possible.

vertex-colouring: assignment of vertex colours with adjacent vertices having different colour. Vertex-colouring with l colours gives rise to a colour partition with l colour-classes.

A graph is *l*-critical if $\nu(\Gamma) = l$ and for all induced subgraphs $\Lambda \neq \Gamma$ we have $\nu(\Lambda) < l$. **Lemma** The chromatic number of a graph X is the least integer l such that there is a homomorphism from X to K_l . (Codsil and Royle)

A *l*-critical graph cannot have a homomorphism to any proper subgraph, and hence must be its own core. This provides a wide class of cores, including all complete graphs and odd cycles. (Codsil and Royle)

The Four Colour Theorem Every planar graph has a vertex-colouring with l = 4 colours

Definitions (cont.)

Rayleigh quotient: $R(X;z) = \langle z, Xz \rangle / \langle z, z \rangle$

maximum and minimum eigenvalues of $X \lambda_{max}(X)$ and $\lambda_{min}(X)$

 $\lambda_{max}(X) \ge R(X; z) \ge \lambda_{min}(X)$, for all $z \ne 0$.

Proof: $U^t X U = D$. Substituting $X = UDU^t$ and z = Uy. $R(X; y) = \langle y, Dy \rangle / \langle y, y \rangle = y^t Dy / y^t (U^t U) y = \sum_i \lambda_i |y_i|^2 / \sum_i |y_i|^2$ so the equations above hold.

Proposition 8.3

(1) If Λ is an induced subgraph of Γ , then $\lambda_{max}(\Lambda) \leq \lambda_{max}(\Gamma); \lambda_{min}(\Lambda) \geq \lambda_{min}(\Gamma).$

(2) If the greates and least degrees among the vertices of Γ are $k_{max}(\Gamma)$ and $k_{min}(\Gamma)$, and the average degree is $k_{ave}(\Gamma)$, then $k_{max}(\Gamma) \geq \lambda_{max}(\Gamma) \geq k_{ave}(\Gamma) \geq k_{min}(\Gamma)$.

Lemma 8.4 Suppose Γ is a graph with chromatic number $l \geq 2$. Then Γ has a *l*-critical induced subgraph Λ , and every vertex of Λ has degree at least l - 1 in Λ .

Proof: The set of induced subgraphs of Γ is non-empty and contains graphs with ν of l and graphs with ν of not l. Let Λ be an induced subgraph with $\nu(\Lambda) = l$, and with minimal $|V\Lambda|$, then Λ is l-critical.

Since if Λ were not *l*-critical, there would be a induced subgraph $\Upsilon \neq \Lambda$ of Λ with $\nu(\Upsilon) \geq l$. But this means that Λ is not minimal in size of the induced subgraphs of Γ with $\nu(\Lambda) = l$.

If $v \in \Lambda$, then $\langle V\Lambda \setminus v \rangle$ is an induced subgraph of Λ and has a vertex-colouring with l-1 colours. If the degree of v in Λ is less than l-1, then we could extend this vertex-colouring to Λ , contradicting the fact that $\nu(\Lambda) = l$. Thus the degree of v is at least l-1.

Proposition 8.5 For any graph Γ we have $\nu(\Gamma) \leq 1 + \lambda_{max}(\Gamma)$. Lemma 8.6 Let X be a real symmetric matrix, partitioned in the

form

$$\mathbf{A} = \left(\begin{array}{cc} P & Q \\ Q^t & R \end{array}\right)$$

, where P and Q are square symmetric matrices. Then $\lambda_{max}(X) + \lambda_{min}(X) \leq \lambda_{max}(P) + \lambda_{max}(R).$ **Corollary 8.7** Let A be a real symmetric matrix, partitioned into t^2 submatrices A_{ij} in such a way that the row and column partitions are the same; in other words, each diagonal sub-matrix $A_{ii}(1 \le i \le t)$ is square, then

$$\lambda_{max}(A) + (t-1)\lambda_{min}(A) \le \sum_{i=0}^{t} \lambda_{max}(A_{ii}).$$

Theorem 8.8

For any graph Γ , whose edge set is non-empty,

 $\nu(\Gamma) \ge 1 + \frac{\lambda_{max}(\Gamma)}{-\lambda_{min}(\Gamma)}.$