The tree-number and determinant expansions (Biggs 6-7)

André Schumacher
March 20, 2006

Overview

- The tree-number $\kappa(\Gamma)$
- $\kappa(\Gamma)$ and the Laplacian matrix
- The σ function
- Elementary (sub)graphs
- Coefficients of $\chi(\Gamma, \lambda)$ revisited
- The tree-number and forests

The tree-number

Definition:

The number of spanning trees of a graph Γ is its tree-number, denoted by $\kappa(\Gamma)$.
Γ disconnected $\rightarrow \kappa(\Gamma)=0$
If Γ equals $K_{n} \rightarrow \kappa(\Gamma)=n^{n-2}$

Laplacian matrix Q

Recall from section 4: Laplacian matrix $Q=D D^{T}$.

Lemma:

Let D be the incidence matrix of a graph Γ, and let Q be the Laplacian matrix.
Then the adjugate of Q is a multiple of J, where J is the all-ones matrix.
Recall from linear algebra:

- Define minor $M_{i j}$ of A as the determinant of the $(n-1) \times(n-1)$ matrix that results from deleting row i and column j of A and the cofactor $C_{i j}=(-1)^{i+j} M_{i j}$.
- Then define the adjugate $\operatorname{adj}(A)_{i j}:=C_{j i}$.
- $A \operatorname{adj}(A)=\operatorname{adj}(A) A=\operatorname{det}(A) I$

Tree-number [1]

Lemma:

Every cofactor of Q is equal to the tree-number of Γ, i.e. :

$$
\operatorname{adj}(Q)=\kappa(\Gamma) J
$$

Recall from section 4:
$Q=\Delta-A$, where Δ contains the degree of each vertex on the diagonal
Thus, for the complete graph K_{n} :

$$
Q=n I-J \rightarrow C_{i j}=n^{n-2}
$$

Tree-number [2]

Proposition:

The tree-number of a graph Γ with n vertices is given by the formula

$$
\kappa(\Gamma)=n^{-2} \operatorname{det}(J+Q)
$$

Defined in the results of section 4:
The Laplacian Spectrum of graph Γ is the spectrum of its Laplacian matrix $Q=D D^{T}$ (eigenvalues).

Corollary:
Let $0 \leq \mu_{1} \leq \ldots \leq \mu_{n-1}$ be the Laplacian spectrum of a graph Γ. Then:

$$
\kappa(\Gamma)=\frac{\mu_{1} \mu_{2} \ldots \mu_{n-1}}{n}
$$

Tree-number [3]

If Γ is connected and k-regular, and its spectrum is

$$
\operatorname{Spec} \Gamma=\left(\begin{array}{cccc}
k & \lambda_{1} & \ldots & \lambda_{s-1} \\
1 & m_{1} & \ldots & m_{s-1}
\end{array}\right)
$$

then

$$
\kappa(\Gamma)=n^{-1} \prod_{r=1}^{s-1}\left(k-\lambda_{r}\right)^{m_{r}}=n^{-1} \chi^{\prime}(\Gamma, k)
$$

where χ^{\prime} denotes the derivative of the characteristic polynomial χ.
Application:

$$
\kappa(L(\Gamma))=2^{m-n+1} k^{m-n} \kappa(\Gamma)
$$

σ function

Definition:

$$
\sigma(\Gamma, \mu):=\operatorname{det}(\mu I-Q)
$$

(characteristic function of the Laplacian matrix)

Proposition:

- If Γ is disconnected, then the σ function for Γ is the product of the σ functions for the components of Γ.
- If Γ is a k -regular graph, then $\sigma(\Gamma, \mu)=(-1)^{n} \chi(\Gamma, k-\mu)$.
- If Γ^{c} is the complement of Γ, and Γ has n vertices, then $\kappa(\Gamma)=n^{-2} \sigma\left(\Gamma^{c}, n\right)$. (the complementary graph has the same vertex set and the complementary set of edges, see results section 3)

Determinant expansion

Definition:

An elementary graph is a simple graph, each component of which is regular and has degree 1 or $2 \leftrightarrow$ each component is a single edge $\left(K_{2}\right)$ or a cycle $\left(C_{r}\right)$. A spanning elementary subgraph of Γ is an elementary subgraph which contains all vertices of Γ.

Proposition:

$$
\operatorname{det}(A)=\sum \operatorname{sgn}(\pi) a_{1, \pi 1} a_{2, \pi 2} \ldots a_{n, \pi n}
$$

where the summation is over all permutations π of the set $\{1,2, \ldots \mathrm{n}\}$.

$$
\operatorname{det}(A)=\sum(-1)^{r(\Lambda)} 2^{s(\Lambda)},
$$

where the summation is over all spanning elementary subgraphs Λ of Γ. (Recall: $r(\Gamma)=n-c, s(\Gamma)=m-n+c$)

Example

Consider the complete graph K_{4}. There are only 2 kinds of elementary subgraphs with four vertices: pairs of disjoint edges ($r=2$ and $s=0$) and 4-cycles ($r=3$ and $s=1$). There are three subgraphs of each kind so we have

$$
\operatorname{det}(A)=3(-1)^{2} 2^{0}+3(-1)^{3} 2^{1}=-3
$$

Characteristic polynomial revisited

Let

$$
\chi(\Gamma, \lambda)=\lambda^{n}+c_{1} \lambda^{n-1} c_{2} \lambda^{n-2}+\ldots+c_{n} .
$$

Proposition:

The coefficients of the characteristic polynomial are given by

$$
(-1)^{i} c_{i}=\sum(-1)^{r(\Lambda)} 2^{s(\Lambda)}
$$

where the summation is over all elementary subgraphs Λ of Γ with i vertices.

Previous values for c_{i}

Previously, we found out:

1. $c_{1}=0 \leftrightarrow$ There is no elementary subgraph with one vertex.
2. $-c_{2}=$ is the number of edges of $\Gamma \leftrightarrow$ The number of elementary graphs with two vertices, $r=1, s=0$
3. $-c_{3}=$ twice the number of triangles in $\Gamma \leftrightarrow$ The number of elementary graphs with three vertices times $2, r=2, s=1$

Similar: The only elementary graphs with 4 vertices are the cycle graph C_{4} and the graph having two disjoint edges. Result:
$c_{4}=$ number of pairs of disjoint edges in Γ

- number of 4-cycles in Γ
$r_{1}=2, s_{1}=0, r_{2}=3, s_{2}=1$

σ function revisited [1]

Let

$$
\sigma(\Gamma, \mu)=\operatorname{det}(\mu I-Q)=\mu^{n}+q_{1} \mu^{n-1}+\ldots+q_{n-1} \mu+q_{n} .
$$

The $(-1)^{i} q_{i}$ is the sum of the principal minors of Q which have i rows and columns. One can show:

$$
q_{1}=-2|E T|, \quad q_{n-1}=(-1)^{n-1} n \kappa(\Gamma), \quad q_{n}=0 .
$$

σ function revisited [2]

Let $D(X, Y)$ denote the submatrix of the incidence matrix D of Γ defined by the rows corresponding to vertices in X and the columns corresponding to edges in Y. (see also Proposition 5.4)

Lemma:

Let V_{0} denote the vertex-set of the subgraph $<Y>$. Then $D(X, Y)$ is invertible if and only if the following conditions are satisfied:

1. X is a subset of V_{0};
2. $\langle Y\rangle$ contains no cycles;
3. $V_{0} \backslash X$ contains precisely one vertex from each component of $<Y>$.

σ function revisited [3]

Definition:

A graph Φ whose co-rank is zero is a forest; it is the union of components each of which is a tree. We shall use the symbol $p(\Phi)$ to denote the product of the number of vertices in the components of Φ.

Theorem:

$$
(-1)^{i} q_{i}=\sum p(\Phi) \quad(1 \leq i \leq n)
$$

where the summation is over all sub-forests Φ of Γ which have i edges.

Tree-number revisited

Corollary:

The tree-number of a graph Γ is given by the formula

$$
\kappa(\Gamma)=n^{n-2} \sum p(\Phi)(-n)^{-|E \Phi|},
$$

where the summation is over all forests Φ which are subgraphs of the complement of Γ.

χ and forests

Proposition:

Let Γ be a regular graph of degree k, and let $\chi^{(i)}(0 \leq i \leq n)$ denote the ith derivative of the characteristic polynomial of Γ. Then

$$
\chi^{(i)}(\Gamma, k)=i!\sum p(\Phi)
$$

where the summation is over all forests Φ which are subgraphs of Γ with $|E \Phi|=n-i$.

