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Overview

• The tree-number κ(Γ)

• κ(Γ) and the Laplacian matrix

• The σ function

• Elementary (sub)graphs

• Coefficients of χ(Γ, λ) revisited

• The tree-number and forests
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The tree-number

Definition:
The number of spanning trees of a graph Γ is its tree-number, denoted by κ(Γ).

Γ disconnected → κ(Γ) = 0
If Γ equals Kn → κ(Γ) = nn−2
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Laplacian matrix Q

Recall from section 4: Laplacian matrix Q = DDT .

Lemma:
Let D be the incidence matrix of a graph Γ, and let Q be the Laplacian matrix.
Then the adjugate of Q is a multiple of J , where J is the all-ones matrix.

Recall from linear algebra:

• Define minor Mij of A as the determinant of the (n − 1) × (n − 1) matrix
that results from deleting row i and column j of A and the cofactor
Cij = (−1)i+jMij.

• Then define the adjugate adj(A)ij := Cji.

• A adj(A) = adj(A) A = det(A) I
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Tree-number [1]

Lemma:
Every cofactor of Q is equal to the tree-number of Γ, i.e. :

adj(Q) = κ(Γ)J

Recall from section 4:

Q = ∆ − A, where ∆ contains the degree of each vertex on the diagonal

Thus, for the complete graph Kn:

Q = nI − J → Cij = nn−2
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Tree-number [2]

Proposition:
The tree-number of a graph Γ with n vertices is given by the formula

κ(Γ) = n−2det(J + Q)

Defined in the results of section 4:
The Laplacian Spectrum of graph Γ is the spectrum of its Laplacian matrix
Q = DDT (eigenvalues).

Corollary:
Let 0 ≤ µ1 ≤ . . . ≤ µn−1 be the Laplacian spectrum of a graph Γ. Then:

κ(Γ) =
µ1µ2 . . . µn−1

n
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Tree-number [3]

If Γ is connected and k-regular, and its spectrum is

SpecΓ =

(

k λ1 . . . λs−1

1 m1 . . . ms−1

)

then

κ(Γ) = n−1
s−1
∏

r=1

(k − λr)
mr = n−1χ′(Γ, k),

where χ′ denotes the derivative of the characteristic polynomial χ.

Application:

κ(L(Γ)) = 2m−n+1km−nκ(Γ)
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σ function

Definition:

σ(Γ, µ) := det(µI − Q)

(characteristic function of the Laplacian matrix)

Proposition:

• If Γ is disconnected, then the σ function for Γ is the product of the σ functions
for the components of Γ.

• If Γ is a k-regular graph, then σ(Γ, µ) = (−1)nχ(Γ, k − µ).

• If Γc is the complement of Γ, and Γ has n vertices, then κ(Γ) = n−2σ(Γc, n).
(the complementary graph has the same vertex set and the complementary set
of edges, see results section 3)
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Determinant expansion

Definition:
An elementary graph is a simple graph, each component of which is regular and
has degree 1 or 2 ↔ each component is a single edge (K2) or a cycle (Cr). A
spanning elementary subgraph of Γ is an elementary subgraph which contains all
vertices of Γ.

Proposition:

det(A) =
∑

sgn(π)a1,π1a2,π2 . . . an,πn,

where the summation is over all permutations π of the set {1,2,. . . n}.

det(A) =
∑

(−1)r(Λ)2s(Λ),

where the summation is over all spanning elementary subgraphs Λ of Γ.
(Recall: r(Γ) = n − c, s(Γ) = m − n + c)
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Example

Consider the complete graph K4. There are only 2 kinds of elementary subgraphs
with four vertices: pairs of disjoint edges (r=2 and s=0) and 4-cycles (r=3 and
s=1). There are three subgraphs of each kind so we have

det(A) = 3(−1)220 + 3(−1)321 = −3



Biggs 6-7 [10]

Characteristic polynomial revisited

Let
χ(Γ, λ) = λn + c1λ

n−1c2λ
n−2 + . . . + cn.

Proposition:
The coefficients of the characteristic polynomial are given by

(−1)ici =
∑

(−1)r(Λ)2s(Λ),

where the summation is over all elementary subgraphs Λ of Γ with i vertices.
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Previous values for ci

Previously, we found out:

1. c1 = 0 ↔ There is no elementary subgraph with one vertex.

2. −c2 = is the number of edges of Γ ↔ The number of elementary graphs with
two vertices, r = 1, s = 0

3. −c3 = twice the number of triangles in Γ ↔ The number of elementary graphs
with three vertices times 2, r = 2, s = 1

Similar: The only elementary graphs with 4 vertices are the cycle graph C4 and
the graph having two disjoint edges. Result:

c4 = number of pairs of disjoint edges in Γ
− number of 4-cycles in Γ

r1 = 2, s1 = 0, r2 = 3, s2 = 1
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σ function revisited [1]

Let

σ(Γ, µ) = det(µI − Q) = µn + q1µ
n−1 + . . . + qn−1µ + qn.

The (−1)iqi is the sum of the principal minors of Q which have i rows and
columns. One can show:

q1 = −2|ET |, qn−1 = (−1)n−1nκ(Γ), qn = 0.
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σ function revisited [2]

Let D(X,Y ) denote the submatrix of the incidence matrix D of Γ defined by the
rows corresponding to vertices in X and the columns corresponding to edges in
Y . (see also Proposition 5.4)

Lemma:
Let V0 denote the vertex-set of the subgraph < Y >. Then D(X,Y ) is invertible
if and only if the following conditions are satisfied:

1. X is a subset of V0;

2. < Y > contains no cycles;

3. V0\X contains precisely one vertex from each component of < Y >.
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σ function revisited [3]

Definition:
A graph Φ whose co-rank is zero is a forest; it is the union of components each
of which is a tree. We shall use the symbol p(Φ) to denote the product of the
number of vertices in the components of Φ.

Theorem:

(−1)iqi =
∑

p(Φ) (1 ≤ i ≤ n),

where the summation is over all sub-forests Φ of Γ which have i edges.
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Tree-number revisited

Corollary:
The tree-number of a graph Γ is given by the formula

κ(Γ) = nn−2
∑

p(Φ)(−n)−|EΦ|,

where the summation is over all forests Φ which are subgraphs of the complement
of Γ.
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χ and forests

Proposition:
Let Γ be a regular graph of degree k, and let χ(i) (0 ≤ i ≤ n) denote the ith

derivative of the characteristic polynomial of Γ. Then

χ(i)(Γ, k) = i!
∑

p(Φ),

where the summation is over all forests Φ which are subgraphs of Γ with
|EΦ| = n − i.


