The tree-number and determinant expansions (Biggs 6-7)

André Schumacher

March 20, 2006

Overview

- The *tree-number* $\kappa(\Gamma)$
- $\kappa(\Gamma)$ and the Laplacian matrix
- $\bullet~{\rm The}~\sigma$ function
- Elementary (sub)graphs
- Coefficients of $\chi(\Gamma,\lambda)$ revisited
- The tree-number and forests

The *tree-number*

Definition:

The number of spanning trees of a graph Γ is its *tree-number*, denoted by $\kappa(\Gamma)$.

 Γ disconnected $\rightarrow \kappa(\Gamma) = 0$ If Γ equals $K_n \rightarrow \kappa(\Gamma) = n^{n-2}$

Laplacian matrix Q

Recall from section 4: Laplacian matrix $Q = DD^T$.

Lemma:

Let D be the incidence matrix of a graph Γ , and let Q be the Laplacian matrix. Then the adjugate of Q is a multiple of J, where J is the *all-ones* matrix.

Recall from linear algebra:

- Define minor M_{ij} of A as the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting row i and column j of A and the cofactor $C_{ij} = (-1)^{i+j} M_{ij}$.
- Then define the adjugate $adj(A)_{ij} := C_{ji}$.
- A adj(A) = adj(A) A = det(A) I

Tree-number [1]

Lemma:

Every cofactor of Q is equal to the *tree-number* of Γ , i.e. :

$$adj(Q) = \kappa(\Gamma)J$$

Recall from section 4:

 $Q = \Delta - A$, where Δ contains the degree of each vertex on the diagonal

Thus, for the complete graph K_n :

$$Q = nI - J \to C_{ij} = n^{n-2}$$

Tree-number [2]

Proposition:

The *tree-number* of a graph Γ with n vertices is given by the formula

$$\kappa(\Gamma) = n^{-2}det(J+Q)$$

Defined in the results of section 4:

The Laplacian Spectrum of graph Γ is the spectrum of its Laplacian matrix $Q = DD^T$ (eigenvalues).

Corollary:

Let $0 \le \mu_1 \le \ldots \le \mu_{n-1}$ be the Laplacian spectrum of a graph Γ . Then:

$$\kappa(\Gamma) = \frac{\mu_1 \mu_2 \dots \mu_{n-1}}{n}$$

Tree-number [3]

If Γ is connected and k-regular, and its spectrum is

Spec
$$\Gamma = \begin{pmatrix} k & \lambda_1 & \dots & \lambda_{s-1} \\ 1 & m_1 & \dots & m_{s-1} \end{pmatrix}$$

then

$$\kappa(\Gamma) = n^{-1} \prod_{r=1}^{s-1} (k - \lambda_r)^{m_r} = n^{-1} \chi'(\Gamma, k),$$

where χ' denotes the derivative of the characteristic polynomial χ . Application:

$$\kappa(L(\Gamma)) = 2^{m-n+1}k^{m-n}\kappa(\Gamma)$$

σ function

Definition:

 $\sigma(\Gamma,\mu) := det(\mu I - Q)$

(characteristic function of the Laplacian matrix)

Proposition:

- If Γ is disconnected, then the σ function for Γ is the product of the σ functions for the components of Γ .
- If Γ is a k-regular graph, then $\sigma(\Gamma, \mu) = (-1)^n \chi(\Gamma, k \mu)$.
- If Γ^c is the complement of Γ, and Γ has n vertices, then κ(Γ) = n⁻²σ(Γ^c, n). (the complementary graph has the same vertex set and the complementary set of edges, see results section 3)

Determinant expansion

Definition:

An elementary graph is a simple graph, each component of which is regular and has degree 1 or 2 \leftrightarrow each component is a single edge (K_2) or a cycle (C_r) . A spanning elementary subgraph of Γ is an elementary subgraph which contains all vertices of Γ .

Proposition:

$$det(A) = \sum sgn(\pi)a_{1,\pi 1}a_{2,\pi 2}\dots a_{n,\pi n},$$

where the summation is over all permutations π of the set $\{1, 2, ..., n\}$.

$$det(A) = \sum (-1)^{r(\Lambda)} 2^{s(\Lambda)},$$

where the summation is over all spanning elementary subgraphs Λ of Γ . (Recall: $r(\Gamma) = n - c$, $s(\Gamma) = m - n + c$)

Example

Consider the complete graph K_4 . There are only 2 kinds of elementary subgraphs with four vertices: pairs of disjoint edges (r=2 and s=0) and 4-cycles (r=3 and s=1). There are three subgraphs of each kind so we have

$$det(A) = 3(-1)^2 2^0 + 3(-1)^3 2^1 = -3$$

Characteristic polynomial revisited

Let

$$\chi(\Gamma,\lambda) = \lambda^n + c_1 \lambda^{n-1} c_2 \lambda^{n-2} + \ldots + c_n.$$

Proposition:

The coefficients of the characteristic polynomial are given by

$$(-1)^i c_i = \sum (-1)^{r(\Lambda)} 2^{s(\Lambda)},$$

where the summation is over all elementary subgraphs Λ of Γ with *i* vertices.

Previous values for c_i

Previously, we found out:

- 1. $c_1 = 0 \leftrightarrow$ There is no elementary subgraph with one vertex.
- 2. $-c_2 =$ is the number of edges of $\Gamma \leftrightarrow$ The number of elementary graphs with two vertices, r = 1, s = 0
- 3. $-c_3 =$ twice the number of triangles in $\Gamma \leftrightarrow$ The number of elementary graphs with three vertices times 2, r = 2, s = 1

Similar: The only elementary graphs with 4 vertices are the cycle graph C_4 and the graph having two disjoint edges. Result:

 $c_4 =$ number of pairs of disjoint edges in Γ

– number of 4-cycles in Γ

 $r_1 = 2$, $s_1 = 0$, $r_2 = 3$, $s_2 = 1$

σ function revisited [1]

Let

$$\sigma(\Gamma, \mu) = det(\mu I - Q) = \mu^n + q_1 \mu^{n-1} + \ldots + q_{n-1} \mu + q_n.$$

The $(-1)^i q_i$ is the sum of the principal minors of Q which have i rows and columns. One can show:

$$q_1 = -2|ET|, \quad q_{n-1} = (-1)^{n-1}n\kappa(\Gamma), \quad q_n = 0.$$

σ function revisited [2]

Let D(X, Y) denote the submatrix of the incidence matrix D of Γ defined by the rows corresponding to vertices in X and the columns corresponding to edges in Y. (see also Proposition 5.4)

Lemma:

Let V_0 denote the vertex-set of the subgraph $\langle Y \rangle$. Then D(X,Y) is invertible if and only if the following conditions are satisfied:

- 1. X is a subset of V_0 ;
- 2. < Y > contains no cycles;
- 3. $V_0 \setminus X$ contains precisely one vertex from each component of $\langle Y \rangle$.

σ function revisited [3]

Definition:

A graph Φ whose co-rank is zero is a *forest*; it is the union of components each of which is a tree. We shall use the symbol $p(\Phi)$ to denote the product of the number of vertices in the components of Φ .

Theorem:

$$(-1)^{i}q_{i} = \sum p(\Phi) \quad (1 \le i \le n),$$

where the summation is over all sub-forests Φ of Γ which have *i* edges.

Tree-number revisited

Corollary:

The tree-number of a graph Γ is given by the formula

$$\kappa(\Gamma) = n^{n-2} \sum p(\Phi)(-n)^{-|E\Phi|},$$

where the summation is over all forests Φ which are subgraphs of the complement of $\Gamma.$

χ and forests

Proposition:

Let Γ be a regular graph of degree k, and let $\chi^{(i)}$ $(0 \le i \le n)$ denote the *i*th derivative of the characteristic polynomial of Γ . Then

$$\chi^{(i)}(\Gamma, k) = i! \sum p(\Phi),$$

where the summation is over all forests Φ which are subgraphs of Γ with $|E\Phi| = n - i$.