Cycles, Cuts and Spanning Trees

Sections 4 and 5 of "Algebraic Graph Theory" by N. Biggs

Leena Salmela

March 13th, 2006

Finite sets and vector spaces

- X is a finite set. The set of all functions from X to \mathbb{C} has the structure of a finite dimensional vector space.
- If $f: X \rightarrow \mathbb{C}$ and $g: X \rightarrow \mathbb{C}$, the vector space operations are defined as follows:

$$
(f+g)(x)=f(x)+g(x), \quad(\alpha f)(x)=\alpha f(x) \quad(x \in X, \alpha \in \mathbb{C})
$$

- The dimension of the vector space is equal to the number of elements in X.

Cycles, Cuts and Spanning Trees

Vertex-space and edge-space

- Vertex-space $C_{0}(\Gamma)$: All functions from $V \Gamma$ to \mathbb{C}
- $V \Gamma=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ so the dimension is n.
- Any function $\eta: V \Gamma \rightarrow \mathbb{C}$ can be represented as column vector $y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{t}$ where $y_{i}=\eta\left(v_{i}\right)$.
- This corresponds to the standard basis $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ defined by

$$
\omega_{i}\left(v_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

- Edge-space $C_{1}(\Gamma)$: All functions from $E \Gamma$ to \mathbb{C}
- Dimension is m.
- The standard basis $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m}\right\}$:

$$
\epsilon_{i}\left(e_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Cycles, Cuts and Spanning Trees

Orientation and incidence matrix

- For each edge one of the vertices is chosen to be the positive end and the other is chosen to be the negative end.
- Incidence matrix D of Γ with respect to the given orientation:

$$
d_{i j}= \begin{cases}+1, & \text { if } v_{i} \text { is the positive end of } e_{j} \\ -1, & \text { if } v_{i} \text { is the negative end of } e_{j} \\ 0, & \text { otherwise }\end{cases}
$$

- With respect to the standard bases D is a linear mapping from $C_{1}(\Gamma)$ to $C_{0}(\Gamma)$.
- The incidence matrix has rank $n-c$ where c is the number of connected components of Γ.

Cycles, Cuts and Spanning Trees

Cycles and the kernel of incidence mapping

- Definitions:
- Rank of $\Gamma: r(\Gamma)=n-c$
- Co-rank of $\Gamma: s(\Gamma)=m-n+c$
- If Q is a subset of edges such that the subgraph $\langle Q\rangle$ is a cycle graph, then Q is a cycle in Γ. Two possible cyclic orderings of vertices in $\langle Q\rangle$ and thus two possible cycle-orientations. Define ξ_{Q} as follows:
$\xi_{Q}(e)= \begin{cases}+1, & \text { if } e \text { belongs to } Q \text { and its orientation }=\text { its cycle-orientation } . \\ -1, & \text { if } e \text { belongs to } Q \text { and its orientation } \neq \text { its cycle-orientation } . \\ 0, & \text { otherwise }\end{cases}$
- The kernel of incidence mapping D of Γ is a vector space whose dimension is equal to co-rank of Γ.
- If Q is a cycle in Γ then ξ_{Q} belongs to the kernel of D.

Cycles, Cuts and Spanning Trees

Definition of cycle-subspace and cut-subspace

- Define an inner product between two elements ρ and σ of the edge-space of Γ :

$$
(\rho, \sigma)=\sum_{e \in E \Gamma} \rho(e) \overline{\sigma(e)}
$$

- The cycle-subspace of Γ is the kernel of the incidence mapping of Γ.
- The cut-subspace of Γ is the orthogonal complement of the cycle-subspace in $C_{1}(\Gamma)$ with respect to the inner product defined above.

Cycles, Cuts and Spanning Trees

About cuts and the cut-subspace

- Partition the vertices of Γ into two non-empty disjoint sets: $V=V_{1} \cup V_{2}$.
- If the set of edges H which have one end in V_{1} and other in V_{2} is non-empty, then H is a cut in Γ.
- There are two possible orientations for the cut: Either V_{1} contains all the positive ends and V_{2} the negative ends or vice versa. Define ξ_{H} :
$\xi_{H}(e)= \begin{cases}+1, & \text { if } e \text { belongs to } H \text { and its orientation }=\text { its cut-orientation } . \\ -1, & \text { if } e \text { belongs to } H \text { and its orientation } \neq \text { its cut-orientation. } \\ 0, & \text { otherwise }\end{cases}$
- The cut-subspace of Γ is a vector space whose dimension is equal to the rank of Γ (which is $n-c$). If H is a cut in Γ then ξ_{H} belongs to the cut-subspace.

Cycles, Cuts and Spanning Trees

The Laplacian matrix

D is the incidence matrix (with respect to some orientation) of a graph Γ and A is the adjacency matrix of Γ. Then the Laplacian matrix Q satisfies:

$$
Q=D D^{t}=\Delta-A
$$

where Δ is the diagonal matrix whose i :th diagonal entry is the degree of vertex v_{i}. Consequently Q is independent of the orientation given to Γ.

Cycles, Cuts and Spanning Trees

Spanning tree

- A spanning tree of Γ is a subgraph which has $n-1$ edges and contains no cycles.
- Let T be a spanning tree in a connected graph Γ :
- For each edge g of Γ which is not in T there is a unique cycle $\operatorname{cyc}(T, g)$ in Γ containing g and edges in T only.
- For each edge h of Γ which is in T there is a unique cut $\operatorname{cut}(T, h)$ in Γ containing h and edges not in T only.
- We give $\operatorname{cyc}(T, g)$ and $\operatorname{cut}(T, h)$ the orientation that coincides with the orientation of g and h in Γ.
- Then we have elements $\xi_{(T, g)}$ and $\xi_{(T, h)}$ which belong to the edge-space $C_{1}(\Gamma)$

Bases for the cycle-subspace and cut-subspace

- As g runs through the set $E \Gamma-T$, the $m-n+1$ elements $\xi_{(T, g)}$ form a basis for the cycle-subspace of Γ.
- As h runs through the set T, the $n-1$ elements $\xi_{(T, h)}$ form a basis for the cut-subspace of Γ.

Cycles, Cuts and Spanning Trees

Incidence matrix and spanning trees

- Any square submatrix of the incidence matrix D of Γ has determinant equal to 0 or +1 or -1 .
- Let U be a subset of $E \Gamma$ with $|U|=n-1$. Let D_{U} be the $(n-1) \times(n-1)$ submatrix of D consisting of those $n-1$ columns that correspond to U and any $n-1$ rows. Then D_{U} is invertible if and only if the subgraph $\langle U\rangle$ is a spanning tree of Γ.

Partitioning the incidence matrix

Label the edges so that edges belonging to a spanning tree T come first. The incidence matrix can then be partitioned as follows:

$$
D=\left[\begin{array}{lll}
D_{T} & & D_{N} \\
& d_{n} &
\end{array}\right]
$$

where D_{T} is an invertible $(n-1) \times(n-1)$ matrix and the last row d_{n} is linearly dependent on the other rows.

Basis for the cycle-subspace

- Let C be the matrix whose columns are the vectors representing elements $\xi_{\left(T, e_{j}\right)}(n \leq j \leq m)$ with respect to the standard basis of $C_{1}(\Gamma)$. Then

$$
C=\left[\begin{array}{c}
C_{T} \\
I_{m-n+1}
\end{array}\right]
$$

- Each column of C is a cycle and thus belongs to the kernel of D so $D C=0$ and furthermore:

$$
C_{T}=-D_{T}^{-1} D_{N}
$$

Basis for the cut-subspace

- Let K be the matrix whose columns represent the elements $\xi_{\left(T, e_{j}\right)}(1 \leq j \leq n-1) . K$ can be written in the form:

$$
K=\left[\begin{array}{c}
I_{n-1} \\
K_{T}
\end{array}\right]
$$

- Each column of K belongs to the orthogonal complement of the cycle-subspace so $K^{t} C=0$. So $K_{T}^{t}+C_{T}=0$ and

$$
K_{T}=\left(D_{T}^{-1} D_{N}\right)^{t}
$$

Cycles, Cuts and Spanning Trees

Application to electric networks (1)

- An electrical network is a connected graph Γ.
- The current and voltage vectors, w and z specify the physical characteristics of the network. These vectors belong to the edge-space.
- If M is a diagonal matrix whose entries are the conductances of the edges and n represents the externally applied voltages, then $z=M w+n$.
- Kirchhoff's laws:

$$
D w=0, \quad C^{t} z=0
$$

- w and z can also be partitioned:

$$
w=\left[\begin{array}{c}
w_{T} \\
w_{N}
\end{array}\right], \quad z=\left[\begin{array}{l}
z_{T} \\
z_{N}
\end{array}\right]
$$

Application to electric networks (2)

- $D w=0$ gives $D_{T} w_{T}+D_{N} w_{N}=0$ and since $C_{T}=-D_{T}^{-1} D_{N}$:

$$
w_{T}=C_{T} w_{N} \quad \text { and } \quad w=C w_{N}
$$

- So all the entries of the current vector are determined by the entries corresponding to edges not in T.
- Substituting in $z=M w+n$ and premultiplying by C^{t} :

$$
\left(C^{t} M C\right) w_{N}=-C^{t} n
$$

- $C^{t} M C$ is invertible so this equation determines w_{N} and consequently both w and z.

