Random Walks on Infinite Networks

Pekka Orponen T-79.7001 Feb 20, 2006

Consider random walk on an infinite (but locally finite) graph G, starting from node a.

Denote: $p_{esc} = Pr(walk \text{ starting at } a \text{ never returns to } a).$

 $p_{esc} = 0 \implies$ walk is recurrent $p_{esc} > 0 \implies$ walk is transient

Note: A recurrent walk visits every node x in G infinitely often, assuming $Pr(a \rightsquigarrow x) > 0$.

Pólya's theorems for *d*-dimensional lattices:

d = 1, 2: random walk on \mathbb{Z}^d recurrent

 $d \geq 3$: random walk on \mathbb{Z}^d transient

(For
$$d = 3$$
, $p_{esc} \approx 0.66$.)

Connection to electric networks

To analyse p_{esc} , consider graph $G^{(r)}$ consisting of nodes in G at most distance r away from a. Denote $\partial G^{(r)} =$ nodes at *exactly* distance r from a. Denoting

 $p_{esc}^{(r)} = \Pr(\text{walk starting at } a \text{ hits } \partial G^{(r)} \text{ before returning to } a),$

we have
$$p_{esc} = \lim_{r \to \infty} p_{esc}^{(r)}$$
.

Laboratory for Theoretical Computer Science

Analysis technique: consider unit resistor network obtained by setting *a* at high potential and grounding $\partial G^{(r)}$. Compute the effective conductance/resistance ($C_{eff}^{(r)}/R_{eff}^{(r)}$) between *a* and $\partial G^{(r)}$. Then (Section 1.3.4):

 $p_{\text{esc}}^{(r)} = \frac{C_{\text{eff}}^{(\prime)}}{C_a} = \frac{1}{(\deg a) \cdot R_{\text{eff}}^{(r)}}.$

Random Walks on Infinite Networks - 3/7

Consider reversible random walk on finite graph *G* with transition probabilities p_{xy} and stationary distribution π_x .

Define resistor network on *G* by:

$$\begin{array}{ll} C_x & \propto & \pi_x, \\ C_{xy} & \propto & \pi_x p_{xy} = \pi_y p_{yx}. \end{array}$$

Fix nodes a, b in G. Consider

 $e_x =$ expected number of visits to node x by random walk starting at a, before hitting b.

Background (cont'd)

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

Then $v_x = \frac{e_x}{\pi_x} \propto \frac{e_x}{C_x}$ is harmonic w.r.t. *G*, *p*:

$$\sum_{y \sim x} p_{xy} v_y = \sum_{y \sim x} p_{xy} \frac{e_y}{\pi_y}$$
$$= \sum_{y \sim x} p_{yx} \frac{\pi_y}{\pi_x} \frac{e_y}{\pi_y} = \frac{1}{\pi_x} \sum_{y \sim x} e_y p_{yx}$$
$$= \frac{e_x}{\pi_x} = v_x.$$

Thus v_x is the *unique* harmonic assignment with $v_a = \frac{e_a}{\pi_a}$, $v_b = 0$; i.e. the v_x correspond to the voltages induced in the network by the given assignments at a and b.

Up to scaling, the same holds for any voltages $v_x = e_x/C_x$, where $C_x \propto \pi_x$.

Background (cont'd)

The currents induced by the voltages v_x are:

$$i_{xy} = (v_x - v_y)C_{xy} = (\frac{e_x}{C_x} - \frac{e_y}{C_y})C_{xy} = e_x p_{xy} - e_y p_{xy}.$$

In particular,

$$i_a = \sum_{y \sim a} i_{ay} = 1,$$

since the random walk started at *a* will eventually be absorbed at *b*.

If for a given resistor network one scales voltage at *a* from e_a/C_a to 1, then current at *a* is scaled from 1 to C_a/e_a .

Background (cont'd)

The effective resistance & conductance between a and b are: $R_{\text{eff}} = v_a/i_a = e_a/C_a$, $C_{\text{eff}} = i_a/v_a = C_a/e_a$.

When $v_a = 1$, voltages v_y correspond to probabilities of random walk starting at y hitting a before b, and so:

$$C_{\text{eff}} = i_a = \sum_{y \sim a} (v_a - v_y) C_{ay} = \sum_{y \sim a} (v_a - v_y) \frac{C_{ay}}{C_a} C_a$$
$$= C_a \sum_{y \sim a} (1 - v_y) p_{ay} = C_a (1 - \sum_{y \sim a} p_{ay} v_y)$$
$$= C_a p_{\text{esc}}.$$

Thus, one obtains the simple formula: $p_{esc} = \frac{C_{eff}}{C_a}$.

