Random Walks on Infinite Networks

Pekka Orponen
T-79.7001 Feb 20, 2006

Recurrence and transience

Consider random walk on an infinite (but locally finite) graph G, starting from node a.

Denote: $p_{\text {esc }}=\operatorname{Pr}($ walk starting at a never returns to $a)$.

$$
\begin{aligned}
& p_{\text {esc }}=0 \Rightarrow \text { walk is recurrent } \\
& p_{\text {esc }}>0 \Rightarrow \text { walk is transient }
\end{aligned}
$$

Note: A recurrent walk visits every node x in G infinitely often, assuming $\operatorname{Pr}(a \rightsquigarrow x)>0$.

Pólya's theorems for d-dimensional lattices:
$d=1,2$: random walk on \mathbb{Z}^{d} recurrent
$d \geq 3$: random walk on \mathbb{Z}^{d} transient
(For $d=3, p_{\text {esc }} \approx 0.66$.)

Connection to electric networks

To analyse $p_{\text {esc }}$, consider graph $G^{(r)}$ consisting of nodes in G at most distance r away from a. Denote $\partial G^{(r)}=$ nodes at exactly distance r from a. Denoting

$$
p_{\text {esc }}^{(r)}=\operatorname{Pr}\left(\text { walk starting at } a \text { hits } \partial G^{(r)} \text { before returning to } a\right),
$$

we have $p_{\text {esc }}=\lim _{r \rightarrow \infty} p_{\text {esc }}^{(r)}$.
Analysis technique: consider unit resistor network obtained by setting a at high potential and grounding $\partial G^{(r)}$. Compute the effective conductance/resistance $\left(C_{\text {eff }}^{(r)} / R_{\text {eff }}^{(r)}\right)$ between a and $\partial G^{(r)}$. Then (Section 1.3.4):

$$
p_{e s c}^{(r)}=\frac{C_{e f f}^{(r)}}{C_{a}}=\frac{1}{(\operatorname{deg} a) \cdot R_{e f f}^{(r)}}
$$

Background review

Consider reversible random walk on finite graph G with transition probabilities $p_{x y}$ and stationary distribution π_{x}.

Define resistor network on G by:

$$
\begin{aligned}
C_{x} & \propto \pi_{x} \\
C_{x y} & \propto \pi_{x} p_{x y}=\pi_{y} p_{y x}
\end{aligned}
$$

Fix nodes a, b in G. Consider
$e_{x}=$ expected number of visits to node x by random walk starting at a, before hitting b.

Background (cont'd)

Then $v_{x}=\frac{e_{x}}{\pi_{x}} \propto \frac{e_{x}}{C_{x}}$ is harmonic w.r.t. G, p :

$$
\begin{aligned}
\sum_{y \sim x} p_{x y} v_{y} & =\sum_{y \sim x} p_{x y} \frac{e_{y}}{\pi_{y}} \\
& =\sum_{y \sim x} p_{y x} \frac{\pi_{y}}{\pi_{x}} \frac{e_{y}}{\pi_{y}}=\frac{1}{\pi_{x}} \sum_{y \sim x} e_{y} p_{y x} \\
& =\frac{e_{x}}{\pi_{x}}=v_{x}
\end{aligned}
$$

Thus v_{x} is the unique harmonic assignment with $v_{a}=\frac{e_{a}}{\pi_{a}}, v_{b}=0$; i.e. the v_{x} correspond to the voltages induced in the network by the given assignments at a and b.
Up to scaling, the same holds for any voltages $v_{x}=e_{x} / C_{x}$, where $C_{x} \propto \pi_{x}$

Background (cont'd)

The currents induced by the voltages v_{x} are:

$$
i_{x y}=\left(v_{x}-v_{y}\right) C_{x y}=\left(\frac{e_{x}}{C_{x}}-\frac{e_{y}}{C_{y}}\right) C_{x y}=e_{x} p_{x y}-e_{y} p_{x y}
$$

In particular,

$$
i_{a}=\sum_{y \sim a} i_{a y}=1,
$$

since the random walk started at a will eventually be absorbed at b. If for a given resistor network one scales voltage at a from e_{a} / C_{a} to 1 , then current at a is scaled from 1 to C_{a} / e_{a}.

Background (cont'd)

The effective resistance \& conductance between a and b are:
$R_{\text {eff }}=v_{a} / i_{a}=e_{a} / C_{a}, \quad C_{\text {eff }}=i_{a} / v_{a}=C_{a} / e_{a}$.
When $v_{a}=1$, voltages v_{y} correspond to probabilities of random walk starting at y hitting a before b, and so:

$$
\begin{aligned}
C_{\text {eff }} & =i_{a}=\sum_{y \sim a}\left(v_{a}-v_{y}\right) C_{a y}=\sum_{y \sim a}\left(v_{a}-v_{y}\right) \frac{C_{a y}}{C_{a}} C_{a} \\
& =C_{a} \sum_{y \sim a}\left(1-v_{y}\right) p_{a y}=C_{a}\left(1-\sum_{y \sim a} p_{a y} v_{y}\right) \\
& =C_{a} p_{\text {esc }} .
\end{aligned}
$$

Thus, one obtains the simple formula: $p_{\text {esc }}=\frac{C_{\text {eff }}}{C_{a}}$.

