Random walks on finite networks

André Schumacher schumach@tcs.hut.fi

February 06, 2006

Overview

- Short review of recent electric network models
- Model of electric networks with arbitrary resistors
- Markov chains for such networks
- Interpretation of voltage
- Interpretation of current

Review

- Random Walks and harmonic functions in one and two dimensions
- Uniqueness and Maximum Principle in one and two dimensions
- Four ways of finding the harmonic function (\equiv solution to the Dirichlet problem):

1. Monte Carlo method
2. Method of relaxations
3. Linear equations
4. Markov chains
\rightarrow So far, the model for electric networks only considered unit resistor values!

Network Model

\rightarrow Rather than considering the resistor values $R_{x y}$, their reciprocal, the conductance $C_{x y}$ is used.
\rightarrow We consider an electric network to be a connected, weighted, undirected graph.

Random Walk (:= Markov chain Model)

Definition: We define a random walk on a graph G modeling a resistor network to be a Markov chain with transition probabilities $P_{x y}$:

$$
P_{x y}:=\frac{C_{x y}}{C_{x}}
$$

$$
C_{x}:=\sum_{y} C_{x y}
$$

$$
p_{a b}=\frac{C_{1}}{C_{1}+C_{2}}
$$

Terminology

Definition: A Markov chain in which it is possible to reach every state from any other state is called ergodic.
Lemma: For an ergodic Markov chain, there is a unique probability vector w that is a fixed vector for P (left eigenvector with eigenvalue 1), i.e. it holds that $w P=w$. For our random walk on the resistor network:

$$
w_{x}=\frac{C_{x}}{C} \quad C=\sum_{x} C_{x}
$$

Definition: An ergodic Markov chain for which the following holds is called reversible:

$$
w_{x} * P_{x y}=w_{y} * P_{y x}
$$

Lemma: If P is any reversible ergodic Markov chain, then P is the transition matrix for a random walk on an electric network with $C_{x y}:=w_{x} * P_{x y}$.
Special case: $\forall x, y: C_{x y}:=c \quad$ (simple random walk)

Probabilistic Interpretation of Voltage (1/3)

- Let G be a network of resistors. Like before, we associate a voltage v_{x} to each node x and a current $i_{x y}$ to each edge (x, y). Let $v_{a}=1$ and $v_{b}=0$.
- The following two laws are valid for "real" voltage and current and therefore have to be considered here, too:

Ohm's Law:

$$
i_{x y}=\frac{v_{x}-v_{y}}{R_{x y}}=\left(v_{x}-v_{y}\right) C_{x y} \Rightarrow i_{x y}=-i_{y x}
$$

Kirchhoff's Law:

$$
\begin{gathered}
\sum_{y} i_{x y}=0 \\
\Longrightarrow v_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} v_{y} \Longrightarrow \text { Voltage } v_{x} \text { is harmonic over all points } x \neq a, b
\end{gathered}
$$

Probabilistic Interpretation of Voltage (2/3)

Proof:

Ohm \& Kirchhoff \Rightarrow

$$
\begin{aligned}
\sum_{y}\left(v_{x}-v_{y}\right) C_{x y} & =0 \\
\Rightarrow & v_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} v_{y}
\end{aligned}=\sum_{y} P_{x y} v_{y} \quad x \neq a, b
$$

$\Rightarrow v_{x}$ harmonic for $P\left(P v_{x}=v_{x}\right)$ for all $x \neq a, b$

Probabilistic Interpretation of Voltage (3/3)

- Let h_{x} be the probability that starting at state x , the Markov chain/the random walker given by $\mathrm{P}\left(\right.$ recall: $P_{x y}:=\frac{C_{x y}}{C_{x}}$) reaches first state a before reaching b.
- Then h_{x} harmonic at all points $x \neq a, b, v_{a}=h_{a}=1$ and $v_{b}=h_{b}=0$.
- Modifying P to \bar{P} by defining a and b to be absorbing states it follows by the uniqueness principle that $h_{x}=v_{x}$ and both are solutions to the Dirichlet problem.

Probabilistic Interpretation of Current (1/2)

- Naive idea: Assume that (electrically charged) particles enter the network at point/node a and traverse edges until they eventually reach point b and leave the network.
- Following the course of a single particle, we regard the current $i_{x y}$ to be the expected number of edge traversals $x \rightarrow y$ (reverse traversals are negatives).
- The particle/random walker starts at a and keeps going in the event it returns to this point.

Probabilistic Interpretation of Current (2/2)

- Let u_{x} be the expected number of visits to state x before stating state b. Then one can show (using the reversibility of P and $u_{x}=\sum_{y} u_{y} P_{y x}$):

$$
\frac{u_{x}}{C_{x}}=\sum_{y} P_{x y} \frac{u_{y}}{C_{y}}=v_{x}
$$

The last equation holds because the left side function is harmonic for $x \neq a, b$ and has the same boundary values as v_{x}.

- Ohm's law implies:

$$
i_{x y}=u_{x} P_{x y}-u_{y} P_{y x}
$$

- However, the current $i_{x y}$ is only proportional to the current flowing when a unit voltage is applied \rightarrow the currents $i_{x y}$ have to be normalized such that $\sum_{y} i_{a y}=\sum_{y} i_{y b}=1$.

Effective Resistance / Escape Probability (1/2)

$$
\begin{aligned}
R_{e f f} & :=\frac{v_{a}}{i_{a}} \\
& =R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}+R_{4} \\
& =\frac{1}{C_{e f f}}
\end{aligned}
$$

Let $v_{a}=1$ and let $p_{\text {esc }}$ be the probability that the random walker starting at a reaches b before returning to a. Then:

$$
p_{e s c}=\frac{C_{e f f}}{C_{a}}
$$

Escape Probability (2/2)

Proof:

$$
\begin{aligned}
\frac{v_{a}}{i_{a}} & =\frac{1}{C_{e f f}} \\
\Rightarrow C_{e f f} & =i_{a} \quad \text { for } v_{a}=1 \\
i_{a} & =\sum_{y}\left(1-v_{y}\right) C_{a y}=\sum_{y} C_{a y}-v_{y} \frac{C_{a y}}{C_{a}} C_{a} \\
& =C_{a}\left(1-\sum_{y} P_{a y} v_{y}\right) \\
\Rightarrow i_{a} & =C_{a} p_{\text {esc }} \\
\Rightarrow p_{e s c} & =\frac{C_{e f f}}{C_{a}}
\end{aligned}
$$

End

Thank you for your attention. . .

- <Questions? / Discussion>
- <Break>
- <Exercises>

