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What is this?

Algebraic graph theory = study of graph properties via the algebraic
characteristics of adjacency matrices

Spectral graph theory = algebraic graph theory specialised to
eigenvalue characteristics

Why is this useful?
Algebraic features of adjacency matrices reflect graph properties in

Interesting & unexpected ways.

Provides deepened intuition into graphs, and makes possible the
use of advanced tools from linear algebra, matrix theory and
geometry in the study of graph properties.
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Example: Paths & Connectivity

Consider the following graph G-
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Example: Paths & Connectivity (cont’d)

This has adjacency matrix Ag:
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Example: Paths & Connectivity (cont’d)

The square of this counts paths of length two in G:

21 110010 0]
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113011100
110311001
AL=10 01131 11 0
001112001
101010311
0100107121
001010111 3

%ﬂ general, A*[i, j] equals the number of paths of length & from i to
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Example: Paths & Connectivity (cont’d)

And of course the cube counts paths of length three:
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%ﬂ general, A% i, j] = number of paths in G of length & from i to ;.
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Other simple properties

Let G be a connected graph with minimal degree § and maximal
degree A. Then:

B The maximal eigenvalue \y of A, satisfies § < \g < A.
B Every eigenvalue ) of Ag satisfies || < A.
B A is an eigenvalue of Ag if and only if G is regular.

B If A is an eigenvalue, then it has multiplicity 1. (For
disconnected ¢, the multiplicity of A corresponds to the
number of components.)

m If —A is an eigenvalue of Ag, then G Is regular and bipartite.
B eftc.
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Example: Random walks

For a matrix P describing a random walk on a graph, the largest
eigenvalue is always 1, with left eigenvector the stationary
distribution 7 and right eigenvector (1,1,...,1). (Up to scaling.)

If the random walk is simple, i.e. at each node the choice of next
neighbour is made uniformly at random, then all eigenvalues of P
arerealandsatisfy: 1 =X g > A1 > X o> ... >\, > —1.

The convergence rate of the walk is dominated by the second
largest eigenvalue modulus, which may be assumed to equal \;. (A
simple modification to P will guarantee this.)

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.7001 Spring 2006: Algebraic and Spectral Graph Thedji2



Application: Graph clustering

The right eigenvector associated to A\, is known as the Fiedler
vector of the matrix. It provides information on the cluster structure
of the graph.

Consider e.g. a random walk on the following graph G, which is
otherwise simple but node 1 is absorbing:

g

HELSINKI UNIVERSITY NOLOGY
Laboratory for Th cal Computer Science T-79.7001 Spring 2006: Algebraic and Spectral Graph The@12



Clustering (cont’d)

Then:
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Clustering (cont’d)

In this case the eigenvalue spectrum is:

A=[1 095 0.72 0.40 -0.13 —-0.20 —0.48 —0.59 -0.67 |,

and the left and right eigenvectors corresponding to A\; = 0.95 are,
suitably normalised:

pp=| 1 -0.08 -0.08 -0.14 -0.17 -0.11 -0.14 -0.11 -0.17
up = 0 047 047 0.86 I 098 086 0.98 1]
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Small example (cont’d)

Superimposed on G, the Fiedler vector is:

The cluster of the absorbing node 1 is clearly discernible from the

%iedler values.
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