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What is this?

Algebraic graph theory = study of graph properties via the algebraic
characteristics of adjacency matrices

Spectral graph theory = algebraic graph theory specialised to
eigenvalue characteristics

Why is this useful?

Algebraic features of adjacency matrices reflect graph properties in
interesting & unexpected ways.

Provides deepened intuition into graphs, and makes possible the
use of advanced tools from linear algebra, matrix theory and
geometry in the study of graph properties.
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Example: Paths & Connectivity

Consider the following graph G:
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Example: Paths & Connectivity (cont’d)

This has adjacency matrix AG:

AG =
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Example: Paths & Connectivity (cont’d)

The square of this counts paths of length two in G:
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In general, Ak[i, j] equals the number of paths of length k from i to

j.
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Example: Paths & Connectivity (cont’d)

And of course the cube counts paths of length three:
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In general, Ak

G
[i, j] = number of paths in G of length k from i to j.

T-79.7001 Spring 2006: Algebraic and Spectral Graph Theory– 6/12



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other simple properties

Let G be a connected graph with minimal degree δ and maximal
degree ∆. Then:

The maximal eigenvalue λ0 of AG satisfies δ ≤ λ0 ≤ ∆.

Every eigenvalue λ of AG satisfies |λ| ≤ ∆.

∆ is an eigenvalue of AG if and only if G is regular.

If ∆ is an eigenvalue, then it has multiplicity 1. (For
disconnected G, the multiplicity of ∆ corresponds to the
number of components.)

If −∆ is an eigenvalue of AG, then G is regular and bipartite.

etc.
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Example: Random walks

For a matrix P describing a random walk on a graph, the largest
eigenvalue is always 1, with left eigenvector the stationary
distribution π and right eigenvector (1, 1, . . . , 1). (Up to scaling.)

If the random walk is simple, i.e. at each node the choice of next
neighbour is made uniformly at random, then all eigenvalues of P
are real and satisfy: 1 = λ0 > λ1 ≥ λ2 ≥ . . . ≥ λn > −1.

The convergence rate of the walk is dominated by the second
largest eigenvalue modulus, which may be assumed to equal λ1. (A
simple modification to P will guarantee this.)
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Application: Graph clustering

The right eigenvector associated to λ1 is known as the Fiedler
vector of the matrix. It provides information on the cluster structure
of the graph.
Consider e.g. a random walk on the following graph G, which is
otherwise simple but node 1 is absorbing:
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Clustering (cont’d)

Then:

P =
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Clustering (cont’d)

In this case the eigenvalue spectrum is:

λ = [ 1 0.95 0.72 0.40 −0.13 −0.20 −0.48 −0.59 −0.67 ],

and the left and right eigenvectors corresponding to λ1 = 0.95 are,
suitably normalised:

ρ1 = [ 1 −0.08 −0.08 −0.14 −0.17 −0.11 −0.14 −0.11 −0.17],

u1 = [ 0 0.47 0.47 0.86 1 0.98 0.86 0.98 1]T
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Small example (cont’d)

Superimposed on G, the Fiedler vector is:
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The cluster of the absorbing node 1 is clearly discernible from the
Fiedler values.
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