T-79.7001 Spring 2006: Algebraic and Spectral Graph Theory

Pekka Orponen

Laboratory for Theoretical Computer Science
Helsinki University of Technology

What is this?

Algebraic graph theory = study of graph properties via the algebraic characteristics of adjacency matrices

Spectral graph theory = algebraic graph theory specialised to eigenvalue characteristics

Why is this useful?
Algebraic features of adjacency matrices reflect graph properties in interesting \& unexpected ways.

Provides deepened intuition into graphs, and makes possible the use of advanced tools from linear algebra, matrix theory and geometry in the study of graph properties.

Example: Paths \& Connectivity

Consider the following graph G :

Example: Paths \& Connectivity (cont'd)

This has adjacency matrix A_{G} :

$$
A_{G}=\left[\begin{array}{ccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Example: Paths \& Connectivity (cont'd)

The square of this counts paths of length two in G :

$$
A_{G}^{2}=\left[\begin{array}{ccccccccc}
2 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 3 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 3 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 3 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 3 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 2 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 3 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 3
\end{array}\right]
$$

In general, $A^{k}[i, j]$ equals the number of paths of length k from i to

Example: Paths \& Connectivity (cont'd)

And of course the cube counts paths of length three:

$$
A_{G}^{3}=\left[\begin{array}{lllllllll}
2 & 4 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & 2 & 5 & 1 & 2 & 1 & 5 & 1 & 1 \\
4 & 5 & 2 & 5 & 1 & 1 & 1 & 1 & 2 \\
1 & 1 & 5 & 2 & 5 & 4 & 2 & 1 & 1 \\
1 & 2 & 1 & 5 & 2 & 4 & 1 & 1 & 5 \\
1 & 1 & 1 & 4 & 4 & 2 & 1 & 1 & 1 \\
1 & 5 & 1 & 2 & 1 & 1 & 2 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 & 1 & 4 & 2 & 4 \\
1 & 1 & 2 & 1 & 5 & 1 & 5 & 4 & 2
\end{array}\right]
$$

In general, $A_{G}^{k}[i, j]=$ number of paths in G of length k from i to j.

Other simple properties

Let G be a connected graph with minimal degree δ and maximal degree Δ. Then:

■ The maximal eigenvalue λ_{0} of A_{G} satisfies $\delta \leq \lambda_{0} \leq \Delta$.
■ Every eigenvalue λ of A_{G} satisfies $|\lambda| \leq \Delta$.
$\square \Delta$ is an eigenvalue of A_{G} if and only if G is regular.
\square If Δ is an eigenvalue, then it has multiplicity 1 . (For disconnected G, the multiplicity of Δ corresponds to the number of components.)
■ If $-\Delta$ is an eigenvalue of A_{G}, then G is regular and bipartite.
\square etc.

Example: Random walks

For a matrix P describing a random walk on a graph, the largest eigenvalue is always 1 , with left eigenvector the stationary distribution π and right eigenvector ($1,1, \ldots, 1$). (Up to scaling.)

If the random walk is simple, i.e. at each node the choice of next neighbour is made uniformly at random, then all eigenvalues of P are real and satisfy: $1=\lambda_{0}>\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>-1$.

The convergence rate of the walk is dominated by the second largest eigenvalue modulus, which may be assumed to equal λ_{1}. (A simple modification to P will guarantee this.)

Application: Graph clustering

The right eigenvector associated to λ_{1} is known as the Fiedler vector of the matrix. It provides information on the cluster structure of the graph.
Consider e.g. a random walk on the following graph G, which is otherwise simple but node 1 is absorbing:

Clustering (cont'd)

Then:

$$
P=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 0 & 1 / 3 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 3 & 1 / 3 & 0
\end{array}\right]
$$

Clustering (cont'd)

In this case the eigenvalue spectrum is:

$$
\lambda=\left[\begin{array}{lllllllll}
1 & 0.95 & 0.72 & 0.40 & -0.13 & -0.20 & -0.48 & -0.59 & -0.67
\end{array}\right],
$$

and the left and right eigenvectors corresponding to $\lambda_{1}=0.95$ are, suitably normalised:

$$
\begin{aligned}
& \rho_{1}=\left[\begin{array}{rrrrrrrrr}
1 & -0.08 & -0.08 & -0.14 & -0.17 & -0.11 & -0.14 & -0.11 & -0.17 \\
u_{1}=\left[\begin{array}{lrrrrrrr}
0 & 0.47 & 0.47 & 0.86 & 1 & 0.98 & 0.86 & 0.98 \\
1
\end{array}\right]
\end{array} \begin{array}{l}
1
\end{array}\right]
\end{aligned}
$$

Small example (cont'd)

Superimposed on G, the Fiedler vector is:

The cluster of the absorbing node 1 is clearly discernible from the Fiedler values.

