Problems to sections 6 and 7 of "Algebraic Graph Theory" by N.Biggs

1. [page 42, problem 6a]

If Γ is a connected k-regular graph with n vertices, show using Corollary 6.5 and the arithmetic-geometric mean inequality:

$$
\kappa(\Gamma) \leq \frac{1}{n}\left(\frac{n k}{n-1}\right)^{n-1}
$$

with equality if and only if $\Gamma=K_{n}$.
2. [page 49, problem $\mathbf{7 b}$]

The characteristic polynomial of a tree: Suppose that $\sum c_{i} \lambda^{n-i}$ is the characteristic polynomial of a tree with n vertices. Show that the odd coefficients $c_{2 r+1}$ are zero, and the even coefficients $c_{2 r}$ are given by the rule that $(-1)^{r} c_{2 r}$ is the number of ways of choosing r disjoint edges in the tree.
3. [first part of page 49, problem 7d]

The σ function of a star graph: A star graph is a complete bipartite graph $K_{1, b}$. For such a graph we can calculate σ explicitly from the formula of Theorem 7.5. Show that

$$
\sigma\left(K_{1, b} \mu\right)=\mu(\mu-b-1)(\mu-1)^{b-1}
$$

4. Let $K_{n, m}$ be the complete bipartite graph (cmp. problems to sections 2 and 3). Calculate the number of elementary subgraphs of $K_{n, m}$.
