Problems to sections 2 and 3 of "Algebraic Graph Theory" by N. Biggs

1. A graph G is called bipartite if its vertex set can be split into two parts V_{1} and V_{2} such that every edge has one end in V_{1} and another one in V_{2}. We denote a complete bipartite graph with $\left|V_{1}\right|=n$, $\left|V_{2}\right|=m$ by $K_{n, m}$ (every vertex in V_{1} is connected with all the vertices in V_{2}). Compute the spectrum of $K_{n, m}$ (find all the eigenvalues and their multiplicities).
2. Let A be the adjacency matrix of a connected graph G with diameter d. Prove that d equals the minimum value of k such that all the entries of matrix $(I+A)^{k}$ are non-zero. Using this fact, suggest an efficient algorithm for computing diameters of connected graphs.
3. It is proved in the beginning of section 3 that the multiplicity of eigenvalue k of a k-regular connected graph is 1 (Proposition 3.1). What is the multiplicity of k for an arbitrary k-regular graph? In general, what can be said of the spectrum of a graph consisting of several connected components?
4. We denote the complete graph with $|V|=n$ by K_{n}. Prove that a graph obtained from K_{7} by removing three arbitrary edges is not a line graph.
