MANA IV Proof of Security

Jukka Valkonen

Laboratory for Theoretical Computer Science Helsinki University of Technology

4.12.2007

Jukka Valkonen MANA IV Proof of Security

- Introduction
- Cryptographic preliminaries
- The protocol
- Security Analysis

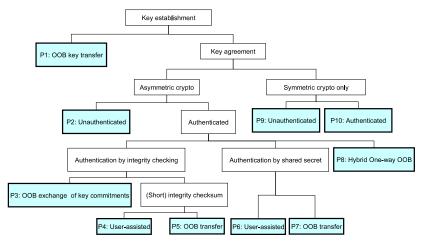
- Setting up a shared key in ad-hoc network
 - No key hierarchy
 - No pre-shared secrets
 - Ordinary users without any knowledge of security protocols
- Mana IV can be used to authenticate the negotiated key

Communication Model

Out-of-Band channels

- Authentic, some times secret
- Adversary can read, delay and reorder messages
- Low bandwidth
- In-band channels
 - Routed via malicious adversary
 - Adversary can read, insert, delete and modifuy messages
 - Dolev-Yao -adversary

Key Establishment Protocols for First Connect



Jukka Valkonen MANA IV Proof of Security

• A hash function is ϵ_u -almost universal if given two inputs $x_0 \neq x_1$:

$$\Pr[k \leftarrow \mathcal{K} : h(x_0, k) = h(x_1, k)] \leq \epsilon_u$$

• A hash function is ϵ_u -almost XOR universal if for any $x_0 \neq x_1$ and y

$$Pr[k \leftarrow \mathcal{K} : h(x_0, k) \oplus h(x_1, k) = y] \leq \epsilon_u$$

Keyed hash functions

- Special notion needed when key is divided into two sub-keys: h: M × K_a × K_b → T
- A hash function is (ε_a, ε_b)-almost regular w.r.t. the sub-keys if for each data x ∈ M, tag y and sub-keys k_a ∈ K, k_b ∈ K:

$$\Pr[k_{a} \leftarrow \mathcal{K}_{a} : h(x, k_{a}, \widehat{k}_{b}) = y] \leq \epsilon_{a}$$

and

$$\Pr[k_b \leftarrow \mathcal{K}_b : h(x, \widehat{k}_a, k_b) = y] \leq \epsilon_b$$

Keyed hash functions

• A hash function is ϵ_u -almost universal w.r.t. the sub-key k_a if for any two data $x_0 \neq x_1$ and k_b , $\hat{k}_b \in \mathcal{K}_b$:

$$\Pr[k_a \leftarrow \mathcal{K} : h(x_0, k_a, k_b) = h(x_1, k_a, \widehat{k}_b)] \leq \epsilon_u$$

A hash function is strongly e_u-almost universal w.r.t. the sub-key k_a if for any (x₀, k_b) ≠ (x₁, k
_b) we have

$$\Pr[k_a \leftarrow \mathcal{K} : h(x_0, k_a, k_b) = h(x_1, k_a, \widehat{k}_b)] \leq \epsilon_u$$

• Here
$$\epsilon_u, \epsilon_a, \epsilon_b \geq \frac{1}{|\mathcal{T}|}$$

• If the equality holds, the word *almost* is skipped

- Commitment scheme *Com* is specified by three algorithms:
 - Gen generates the public parameters pk
 - Com takes pk and message and transforms them into a commit value c and a decommit value d:

$$\mathcal{M}\times\mathcal{R}\to\mathcal{C}\times\mathcal{D}$$

- Open opens the commitment: Open(c, d) = m for all (c, d) = Com(m, r)
- ullet Incorrect decommit value yields to special abort value ot

 A commitment scheme is (t, ε₁)-hiding if any t-time adversary A achieves advantage

$$\operatorname{Adv}_{\operatorname{Com}}^{\operatorname{hid}}(A) = 2 \cdot \left| \Pr \left[\begin{array}{c} \mathsf{pk} \leftarrow \operatorname{Gen}, s \leftarrow \{0, 1\}, (x_0, x_1, \sigma) \leftarrow A(\mathsf{pk}) \\ (c_s, d_s) \leftarrow \operatorname{Com}_{\mathsf{pk}}(x_s) : A(\sigma, c_s) = s \end{array} \right] - \frac{1}{2} \right| \leq \varepsilon_1$$

 A commitment scheme is (t, ε₂)-binding if any t-time adversary A achieves advantage

$$\begin{split} \mathrm{Adv}^{\mathsf{bind}}_{\mathcal{C}\!om}(A) &= \Pr\left[\begin{matrix} \mathsf{pk} \leftarrow \mathsf{Gen}, (c, d_0, d_1) \leftarrow A(\mathsf{pk}) : \\ \bot \neq \mathsf{Open}_{\mathsf{pk}}(c, d_0) \neq \mathsf{Open}_{\mathsf{pk}}(c, d_1) \neq \bot \end{matrix} \right] \leq \varepsilon_2 \enspace . \end{split}$$

"Intuitively, a commitment scheme is non-malleable, if given a valid commitment c, it is infeasible to generate related commitments c_1, \ldots, c_n that can be successfully opened after seeing a decommitment value d." An adversary is a quadruple $A = (A_1, A_2, A_3, A_4)$ of

algorithms, where $A_{1...3}$ are active and A_4 is a distinguisher

- 1 The challenger draws two independent samples $x_0 \leftarrow MGen, x_1 \leftarrow MGen$ and computes a challenge commitment $(c, d) \leftarrow Com_{pk}(x_0)$
- 2 Challenger sends c to A_2 that computes a commitment vector c_1, \ldots, c_n . If some $c_i = c$ then Challenger stops Awith \perp

Non-malleable commitment schemes

- 3 Challenger sends d to A₃ that must produce a valid decommitment vector d₁,..., d_n (y_i = Open_{pk}(c_i, d_i)). If some y_i =⊥ A is stopped with ⊥.
- 4 In World₀ Challenger invokes $A_4(x_0, y_1, \ldots, y_n)$ with correct x_0 and in World₀ $A_4(x_1, y_1, \ldots, y_n)$

A commitment scheme is (t, ϵ) -non-malleable iff for any t-time adversary A the advantage of distinguishing the two worlds is

$$\mathsf{Adv}^{\mathsf{nm}}_{\mathcal{C}om}(A) = |\mathsf{Pr}[\mathsf{A}_4 = 0|\mathsf{World}_0] - \mathsf{Pr}[\mathsf{A}_4 = 0|\mathsf{World}_1]|$$

MANA IV

- Alice computes $(c, d) \leftarrow \operatorname{Com}_{pk}(k_a)$ for random $k_a \leftarrow \mathcal{K}$ and sends (m_a, c) to Bob
- **2** Bob chooses random $k_b \leftarrow \mathcal{K}$ and sends (m_b, k_b) to Alice
- Alice sends d to Bob, who computes k_a ← Open_{pk}(c, d) and halts if k_a =⊥. Both parties compute a test value oob = h(m_a||m_b, k_a, k_b) from the received messages
- Soth parties accept (m_a, m_b) iff the local *I*-bit test values oob_a and oob_b coincide

h is a keyed hash function with sub-keys k_a, k_b where \mathcal{K}_a is a message space of commitment scheme

Idea of the security proof

The idea is to go through all the strategies an adversary can use to attack the protocol run. These include

- Adversary attacks h by altering m_a, m_b, k_b and possible d
- Attacks based on abnormal execution paths

The attacker succeeds if Alice and Bob accept but $(m_a, \widehat{m_b}) \neq (\widehat{m_a}, m_b)$

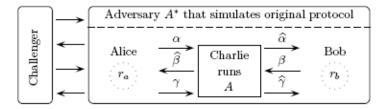


Fig. 4. Generic reduction scheme

For any t, there exists $\tau = t + O(1)$ such that if Com is (τ, ϵ_1) -hiding, ϵ_2 -binding and (τ, ϵ_3) -non-malleable and h is (ϵ_a, ϵ_b) -almost regular and ϵ_u almost universal w.r.t. the sub-key k_a then the MANA IV protocol is $(2\epsilon_1 + 2\epsilon_2 + \epsilon_3 + \max\{\epsilon_a, \epsilon_b, \epsilon_u\}, t)$ -secure.

For any t, there exists $\tau = 2t + O(1)$ such that if Com is (τ, ϵ_1) -hiding, (τ, ϵ_2) -binding and (τ, ϵ_3) -non-malleable and h is (ϵ_a, ϵ_b) -almost regular and ϵ_u almost universal w.r.t. the sub-key k_a then the MANA IV protocol is $(2\epsilon_1 + \epsilon_2 + \sqrt{\epsilon_2} + \epsilon_3 + \max\{\epsilon_a, \epsilon_b, \epsilon_u\}, t)$ -secure.

For any t, there exists $\tau = t + O(1)$ such that if Com is τ, ϵ_1 -hiding and (τ, ϵ_2) -binding and h is ϵ_u -almost universal w.r.t. the sub-key k_a , then for any t-time adversary A and input data (m_a, m_b)

Pr[d-forge \land norm $\land c = \hat{c}] \leq \epsilon_u \cdot Pr[norm \land c = \hat{c}] + \epsilon_1 + \epsilon_2$

Proof

Assume a t-time algorithm A which violates the previous probability

Let's construct A^* that wins the hiding game, i.e. given pk outputs (x_0, x_1, σ) and afterwards after given a commitment c_s for $s \leftarrow \{0, 1\}$ is able to correctly guess the bit s

- Given pk, chooses k_a, k^{*}_a ← K_a as (x₀, x₁) and sends (k_a, k^{*}_a, pk) to Challenger
- When Challenger replies c_s for (c_s, d_s) = Com_{pk}(x_s), A^{*} simulates a faithful execution of Mana IV with $\alpha = (m_a, c_s)$ until A queries γ . A^{*} stops the simulation and halts with ⊥ if there is a protocol failure ¬norm or $c \neq \hat{c}$
- If $h(m_a \| \widehat{m}_b, k_a, \widehat{k}_b) = h(\widehat{m}_a \| m_b, k_a, k_b)$ and $(m_a, \widehat{m}_b) \neq (\widehat{m}_a, m_b)$ outputs guess s = 0, else s = 1

Proof continued

For s = 0 we get

 $Pr[A^* = 0 | s = 0] \ge Pr[d-\text{forge} \land \text{norm} \land c = \widehat{c} \land k_a = \widehat{k}_a]$ For s = 1,

$$\Pr[A^* = 0 | s = 1] \leq \epsilon_u \cdot \Pr[\operatorname{norm} \wedge c = \widehat{c}]$$

as $Pr[A^* \neq \perp | s = 1] = Pr[\text{norm} \land c = \hat{c}]$ (perfect simulation until A queries γ) and c_1 and k_a are statistically independent $(Pr[A^* = 0|s = 1, A^* \neq \perp] \leq \epsilon_u)$

We get

$$\begin{aligned} \mathsf{Adv}^{\mathsf{hid}}(A^*) &= |\Pr[A^* = 0|s = 0] - \Pr[A^* = 0|s = 1]| \ge \\ |\Pr[\mathsf{d-forge} \land \mathsf{norm} \land c = \widehat{c} \land k_a = \widehat{k}_a] - \epsilon_u \cdot \Pr[\mathsf{norm} \land c = \widehat{c}]| > \epsilon_1 \\ \end{aligned}$$
which contradicts the (τ, ϵ_1) -hiding property. Here
$$\begin{aligned} \Pr[\mathsf{d-forge} \land \mathsf{norm} \land c = \widehat{c} \land k_a = \widehat{k}_a] \ge \\ \Pr[\mathsf{d-forge} \land \mathsf{norm} \land c = \widehat{c}] - \epsilon_2 \end{aligned}$$
and the assumption that A
violates the inequality

For any t, there exists $\tau = t + O(1)$ such that if Com is (τ, ϵ_3) -non-malleable and h is (ϵ_a, ϵ_b) -almost regular, then for any t-time adversary A and inputs (m_a, m_b)

 $Pr[d\text{-}forge \land norm \land c \neq \widehat{c}] \leq \epsilon_{a} \cdot Pr[norm \land c \neq \widehat{c}] + \epsilon_{3}$

Proof

Now, A is a t-time algorithm that violates the inequality. Idea is to build an adversary $A^* = (A_1^*, A_2^*, A_3^*, A_4^*)$ that can break the non-malleability of the commitment scheme.

- 1 Given pk, A_1^* outputs a sampler over \mathcal{K}_a and state $\sigma_1 = (\text{pk}, m_a, m_b)$. Challenger computes $x_0, x_1 \leftarrow \mathcal{K}_a$ and $(c, d) \leftarrow \text{Com}_{\text{pk}}(x_0)$
- 2 Given c, σ_1, A_2^* simulates the protool with $k_b \leftarrow \mathcal{K}_b$ and stops before A demands γ . A^* stops and halts with \perp if there is a protocol failure \neg norm or $c = \hat{c}$. Otherwise A_2^* outputs a commitment \hat{c} and σ_2 containing enough information to resume the simulation.

3 Given d, σ_2, A_3^* resumes the simulation and outputs \widehat{d} 4 If A_3^* was successful in opening \widehat{c} then $A^*(x_s, u, \sigma_2)$ sets $k_a \leftarrow x_s$ and $\widehat{k}_a \leftarrow y$ and computes $\operatorname{oob}_a = h(m_a \| \widehat{m}_b, k_a, \widehat{k}_b)$ and $\operatorname{oob}_b = h(\widehat{m}_a \| m_b, \widehat{k}_a, k_b)$. A_4^* outputs a guess s = 0 if $\operatorname{oob}_a = \operatorname{oob}_b$ but $(m_a, \widehat{m}_b) \neq (\widehat{m}_a, m_b)$, else s = 1.

Proof continued

Now, in $World_0$, Step 1 provides perfect simulation and in $World_1 k_a$ is independent of all variables computed by A. Thus

$$\Pr[A_4^* = 0 | \texttt{World}_0] = \Pr[\mathsf{d} ext{-forge} \wedge \mathsf{norm} \land c
eq \widehat{c}]$$

and

$$Pr[A_4^* = 0 | \texttt{World}_1] = \epsilon_a \cdot Pr[\texttt{norm} \land c \neq \widehat{c}]$$

as h is (ϵ_a, ϵ_b) -almost regular.

This results as a contradiction as

$$\mathsf{Adv}^{\mathsf{nm}}(A^*) = |\mathsf{Pr}[A^* = 0| \texttt{World}_0] - \mathsf{Pr}[A^* = 0| \texttt{World}_1| > \epsilon_3$$

For any t, there exists $\tau = t + O(1)$ such that if Com is (τ, ϵ_1) -hiding, h is (ϵ_a, ϵ_b) -almost regular. Then for any t-time adversary A and input (m_a, m_b)

$$\Pr[d\text{-}\textit{forge} \land \widehat{\gamma} \prec \widehat{\beta}] \leq \epsilon_1 + \epsilon_{a} \cdot \Pr[\widehat{\gamma} \prec \widehat{\beta}]$$

Proof

Again, let A be a *t*-time adversary that violates the previous inequility. If $\widehat{\gamma} \prec \widehat{\beta}$, Bob'c control value oob_b is fixed before A receives γ . Now we have A^* that plays hiding game

- Given pk, chooses $k_a, k_a^* \leftarrow \mathcal{K}_a$ as (x_0, x_1) and sends k_a, k_a^* , pk to Challenger
- When Challenger replies c_s for (c_s, d_s) = Com_{pk}(x_s), A^{*} simulates an execution of Mana IV with $\alpha = (m_a, c_s)$ until A outputs $\hat{\beta}$. A^{*} stops the simulation and halts with ⊥ if there is a protocol failure: $\hat{\beta} \prec \hat{\gamma}$ or Open_{pk} =⊥.
- A* computes $\hat{k}_a = \text{Open}_{pk}(\hat{c}, \hat{d})$, $\text{oob}_a = h(m_a \| \hat{m}_b, k_a, \hat{k}_b)$ and $\text{oob}_b = h(\hat{m}_a \| m_b, \hat{k}_a, k_b)$. If $\text{oob}_a = \text{oob}_b$ and $(m_a, \hat{m}_b) \neq (\hat{m}_a, m_b)$ outputs 0 else 1

Proof continued

If
$$s = 0$$
 then $Pr[A^* = 0 | s = 0] = Pr[d-forge \land \widehat{\gamma} \prec \widehat{\beta}].$
If $s = 1$ then $Pr[A^* = 0 | s = 1] = \epsilon_a \cdot Pr[\widehat{\gamma} \prec \widehat{\beta}]$ as

$$Pr[A^*
eq \perp |s = 1] = Pr[\hat{\gamma} \prec \hat{\beta}]$$
 and
 $Pr[A^* = 0|s = 0, A^* \neq \perp] \leq \epsilon_a$ because of (ϵ_a, ϵ_b) -almost
regularity

The advantage is

$$Adv^{hid}(A^*) = |Pr[A^* = 0|s = 0] - Pr[A^* = 0|s = 1]| > \epsilon_1$$

which results in a contradiction

If Com is statistically ϵ_2 -binding and h is (ϵ_a, ϵ_b) -almost regular, then for each adversary A and input (m_a, m_b)

$$\Pr[d\text{-forge} \land \gamma \prec \beta] \leq \epsilon_2 + \epsilon_b \cdot \Pr[\gamma \prec \beta]$$

For each \hat{c} fix a canonical \hat{k}_a such that $\hat{k}_a = \operatorname{Open}_{\mathsf{pk}}(\hat{c}, \hat{d}_0)$ for some \hat{d}_0 . If $\gamma \prec \beta$ the oob_a is fixed before k_b . Now the probability that different k_b values lead to different openings $k'_a \neq \hat{k}_a$ is at most ϵ_2 . Otherwise, one can find valid double openings $\operatorname{Open}_{\mathsf{pk}}(\hat{c}, \hat{d}_0) \neq \operatorname{Open}_{\mathsf{pk}}(\hat{c}, \hat{d}_1)$ just by enumerating all possible protocol runs. Now $\Pr[k_b \leftarrow \mathcal{K} : \operatorname{oob}_a = h(\widehat{m_a} || m_b, \widehat{k}_a, k_b)] \leq \epsilon_b$, as k_b is independent from \widehat{k}_a and oob_a and thus claim follows. For any t there exists $\tau = t + O(1)$ such that if Com is (τ, ϵ_2) -binding and h is (ϵ_a, ϵ_b) -almost regular, then for any t-time adversary A and inputs m_a, m_b

$$\Pr[d\text{-forge} \land \gamma \prec \beta] \leq \epsilon_b \cdot \Pr[\gamma \prec \beta] + \sqrt{\epsilon_2}$$

Proof omitted

by summing up the probabilities the proof is complete