Formal and Strong Security Definitions: Digital Signatures

We know everything about nothing and nothing about everything ...

Sven Laur
swen@math.ut.ee

Helsinki University of Technology

Basic theoretical notions

Formal syntax of a signature scheme I

Various domains associated with the signature scheme:
\mathcal{M} - a set of plausible messages;
\mathcal{S} - a set of possible signatures;
\mathcal{R} - random coins used by the signing algorithm.

Parameters used by the signing and verification algorithms:
pk - a public key (public knowledge needed to verify signatures);
sk - a secret key (knowledge that allows efficient creation of signatures).

Formal syntax of a signature scheme II

Algorithms that define a signature scheme:
\mathcal{G} - a randomised key generation algorithm;
$\delta_{\text {sk }}-$ a randomised signing algorithm;
ν_{pk} - a deterministic verification algorithm.

The key generation algorithm \mathcal{G} outputs a key pair (pk, sk).
The signing algorithm is an efficient mapping $\delta_{\text {sk }}: \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{S}$.
The verification algorithm is an efficient predicate $\mathcal{V}_{\mathrm{pk}}: \mathcal{M} \times \mathcal{S} \rightarrow\{0,1\}$.
A signature scheme must be functional

$$
\forall(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}, \forall m \in \mathcal{M}, \forall r \in \mathcal{R}: \quad \mathcal{V}_{\mathrm{pk}}\left(m, \oint_{\mathrm{sk}}(m ; r)\right)=1
$$

Example. RSA-1024 signature scheme

Key generation \mathcal{G} :

1. Choose uniformly 512 -bit prime numbers p and q.
2. Compute $N=p \cdot q$ and $\phi(N)=(p-1)(q-1)$.
3. Choose uniformly $e \leftarrow \mathbb{Z}_{\phi(N)}^{*}$ and set $d=e^{-1} \bmod \phi(N)$.
4. Output $\mathrm{sk}=(p, q, e, d)$ and $\mathrm{pk}=(N, e)$.

Signing and verification:

$$
\begin{aligned}
\mathcal{M}=\mathbb{Z}_{N}, \quad \mathcal{S}=\mathbb{Z}_{N}, \quad \mathcal{R}=\emptyset \\
\mathcal{S}_{\text {sk }}(m)=m^{d} \quad \bmod N \\
\mathcal{V}_{\mathrm{pk}}(m, s)=1 \quad \Leftrightarrow \quad m=s^{e} \quad \bmod N .
\end{aligned}
$$

When is a signature scheme secure?

Signature schemes like cryptosystems have many applications and thus the corresponding security requirements are quite diverse.

- Key only attack. Given pk, the adversary creates a valid signature (m, s) in a feasible time with a reasonable probability.
- One more signature attack. Given pk and a list of valid signatures $\left(m_{1}, s_{1}\right), \ldots,\left(m_{n}, s_{n}\right)$, the adversary creates a new valid signature (m_{n+1}, s_{n+1}) in a feasible time with a reasonable probability.
- Universal forgery. The adversary must create a valid signature for a message m that is chosen from some prescribed distribution \mathcal{M}_{0}.
- Existential forgery. The adversary must create a valid signature for any message m, i.e., there are no limitations on the message.

Standard attack model

Normally a signature scheme must be secure against existential forgeries and against chosen message attack:

1. Challenger generates $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$ and sends pk to Malice.
2. Malice adaptively queries signatures for messages m_{1}, \ldots, m_{n}.
3. Using pk and a list of queried signatures $\left(m_{1}, s_{1}\right), \ldots,\left(m_{n}, s_{n}\right)$ Malice creates and sends a candidate signature $\left(m_{n+1}, s_{n+1}\right)$ to Challenger.
4. Challenger outputs 1 only if $\mathcal{V}_{\mathrm{pk}}\left(m_{n+1}, s_{n+1}\right)=1$ and the candidate signature $\left(m_{n+1}, s_{n+1}\right)$ is not in the list $\left(m_{1}, s_{1}\right), \ldots,\left(m_{n}, s_{n}\right)$.

Success probability

$$
\text { Adv }{ }^{\text {forge }}(\text { Malice })=\operatorname{Pr}[\text { Challenger }=1]
$$

Show the RSA signature scheme is insecure What does it mean in practise?

Digital Signatures. Conceptual description

Digital signature is a non-interactive version of the following protocol:

1. Charlie sends a message m to Alice.
2. Alice authenticates herself by proving that

- she knows the secret key sk,
- she agrees with the message m.

Differently from the protocol the digital signature must be transferable:
\Rightarrow The signature must be verifiable by other persons.
Fiat-Shamir heuristics converts any sigma-protocol to a signature scheme by replacing the second message with a cleverly chosen hash value.

Fiat-Shamir heuristics

α	If $V_{\mathrm{pk}}(\alpha, \beta, \gamma)=1$ then - Alice passes the test.
Sob can efficiently create the	
protocol transcript by himself.	

What are the main differences between these scenarios?

How to achieve equivalence between these different scenarios?

Sigma protocols. Zero-knowledge property

Schnorr identification protocol Charlie $\begin{array}{ll} x \in \mathbb{Z}_{q} \\ k \leftarrow \mathbb{Z}_{q} \end{array} \quad \begin{aligned} & \alpha=g^{k} \\ & \end{aligned}$ $\begin{gathered} y=g^{x} \\ \beta \leftarrow \mathbb{Z}_{q} \end{gathered}$
Simulation Lemma $\left.\begin{array}{l}\text { To generate a transcript }(\alpha, \beta, \gamma) \text { : } \\ \text { 1. Choose } \beta \leftarrow \mathbb{Z}_{q} \text { and } \gamma \leftarrow \mathbb{Z}_{q} \text {. } \\ \text { 2. Compute } \alpha=g^{\gamma} \cdot y^{-\beta} \text {. } \\ \text { 3. Output }(\alpha, \beta, \gamma) \text {. }\end{array}\right\}$ Simulation is perfect.

Sigma protocols. Special Soundness

Knowledge extraction task

Let $A(r, c)$ be the output of Charlie (c) that interacts with Malice (r).
\triangleright Then all matrix elements in the same row $A(r, \cdot)$ lead to same α value.
\triangleright To extract the secret key sk, we must find two ones in the same row.
\triangleright We can compute the entries of the matrix on the fly.

Propose a randomised algorithm for this task!

Estimate the approximate complexity.

Classical algorithm

Rewind:

1. Probe random entries $A(r, c)$ until $A(r, c)=1$.
2. Store the matrix location (r, c).
3. Probe random entries $A(r, \bar{c})$ in the same row until $A(r, \bar{c})=1$.
4. Output the location triple (r, c, \bar{c}).

Rewind-Exp:

1. Repeat the procedure Rewind until $c \neq \bar{c}$.
2. Use the Knowledge extraction lemma to extract sk.

Average case complexity I

Assume that the matrix contains ε-fraction of nonzero elements, i.e., Malice convinces Charlie with probability ε. Then on average we make

$$
\mathbf{E}\left[\operatorname{probes}_{1}\right]=\varepsilon+2(1-\varepsilon) \varepsilon+3(1-\varepsilon)^{2} \varepsilon+\cdots=\frac{1}{\varepsilon}
$$

matrix probes to find the first non-zero entry. Analogously, we make

$$
\mathbf{E}\left[\operatorname{probes}_{2} \mid r\right]=\frac{1}{\varepsilon_{r}}
$$

probes to find the second non-zero entry. Also, note that

$$
\mathbf{E}\left[\operatorname{probes}_{2}\right]=\sum_{r} \operatorname{Pr}[r] \cdot \mathbf{E}\left[\operatorname{probes}_{2} \mid r\right]=\sum_{r} \frac{\varepsilon_{r}}{\sum_{r^{\prime}} \varepsilon_{r^{\prime}}} \cdot \frac{1}{\varepsilon_{r}}=\frac{1}{\varepsilon}
$$

where ε_{r} is the fraction of non-zero entries in the $r^{\text {th }}$ row.

Average case complexity II

As a result we obtain that the Rewind algorithm does on average

$$
\mathbf{E}[\text { probes }]=\frac{2}{\varepsilon}
$$

probes. Since the Rewind algorithm fails with probability

$$
\operatorname{Pr}[\text { failure }]=\frac{\operatorname{Pr}[\text { halting } \wedge c=\bar{c}]}{\operatorname{Pr}[\text { halting }]} \leq \frac{\kappa}{\varepsilon} \quad \text { where } \quad \kappa=\frac{1}{q}
$$

we make on average

$$
\mathbf{E}\left[\text { probes }^{*}\right]=\frac{1}{\operatorname{Pr}[\text { success }]} \cdot \mathbf{E}[\text { probes }] \leq \frac{\varepsilon}{\varepsilon-\kappa} \cdot \frac{2}{\varepsilon}=\frac{2}{\varepsilon-\kappa} .
$$

Formal security guarantees

Theorem. If Malice manages to convince Charlie with a probability ε over all possible runs of the Schnorr identification scheme, then there exist an extraction algorithm \mathcal{K} that runs in expected time

$$
\mathbf{E}\left[t_{\mathcal{K}}\right]=\Theta\left(\frac{2 \cdot t_{\text {Malice }}}{\varepsilon-\kappa}\right) \quad \text { where } \quad \kappa=\frac{1}{q}
$$

and extracts the corresponding secret key.
Subjective security guarantee. If I believe that finding a particular discrete logarithm $\log (\mathrm{pk})$ is hard then Malice cannot succeed against pk.

Objective security guarantee. If computing discrete logarithm is hard in the group $\langle g\rangle$ then the Malice success probability over all possible public keys must be small or otherwise Theorem leads to a contradiction.

Fiat-Shamir heuristics

α	If $V_{\mathrm{pk}}(\alpha, \beta, \gamma)=1$ then - Alice passes the test.
Sob can efficiently create the	
protocol transcript by himself.	

What are the main differences between these scenarios?

How to achieve equivalence between these different scenarios?

An obvious choice of the function family

Let $\mathcal{H}_{\text {all }}$ of all functions $\left\{h: \mathcal{M} \times \mathcal{R} \rightarrow \mathbb{Z}_{q}\right\}$.
\triangleright If h is chosen uniformly from the function family $\mathcal{H}_{\text {all }}$ then β has the same distribution as in the Schnorr identification protocol.
\triangleright The value $h(m, \alpha)$ is independent form other values $h\left(m_{i}, \alpha_{i}\right)$.
\triangleright If Malice has only a black-box access to h and must make oracle queries to evaluate $h(m, \alpha)$ then Malice cannot know β before choosing α.

The corresponding model is known as random oracle model.
\triangleright We can always assume that Malice computes β as $h(m, \alpha)$.
\triangleright If Malice makes a single hashing query then Malice succeeds with the same probability as in the Schnorr identification protocol.

General knowledge extraction task

Assume that Malice never queries the same value $h\left(m_{i}, \alpha_{i}\right)$ twice and that Malice herself verifies the validity of the candidate signature (m_{n+1}, s_{n+1}).

Let ω_{0} denote the randomness used by Malice and let $\omega_{1}, \ldots \omega_{n+1}$ be the replies for the hash queries $h\left(m_{i}, \alpha_{i}\right)$. Now define

$$
A\left(\omega_{0}, \omega_{1}, \ldots, \omega_{n+1}\right)= \begin{cases}i, & \text { if the } i^{\text {th }} \text { reply } \omega_{i} \text { is used in forgery }, \\ 0, & \text { if Malice fails }\end{cases}
$$

\triangleright For any $\bar{\omega}=\left(\omega_{0}, \ldots, \omega_{i-1}, \bar{\omega}_{i}, \ldots, \bar{\omega}_{n+1}\right)$, Malice behaves identically up to the $i^{\text {th }}$ query as with the randomness ω.
\triangleright To extract the secret key sk, we must find $\boldsymbol{\omega}$ and $\overline{\boldsymbol{\omega}}$ such that $A(\boldsymbol{\omega})=i$ and $A(\bar{\omega})=i$ and $\omega_{i} \neq \bar{\omega}_{i}$.

Extended classical algorithm

Rewind:

1. Probe random entries $A(\boldsymbol{\omega})$ until $A(r, c) \neq 0$.
2. Store the matrix location $\boldsymbol{\omega}$ and the rewinding point $i \leftarrow A(\boldsymbol{\omega})$.
3. Probe random entries $A(\bar{\omega})$ until $A(\bar{\omega})=i$.
4. Output the location tuple $(\boldsymbol{\omega}, \overline{\boldsymbol{\omega}})$.

Rewind-Exp:

1. Repeat the procedure Rewind until $\omega_{i} \neq \bar{\omega}_{i}$.
2. Use the Knowledge extraction lemma to extract sk.

Average case complexity I

Assume that Malice convinces Charlie with probability ε. Then the results proved for the simplified case imply

$$
\mathbf{E}\left[\text { probes }_{1}\right]=\frac{1}{\varepsilon} \quad \text { and } \quad \mathbf{E}\left[\text { probes }_{2} \mid A(\boldsymbol{\omega})=i\right]=\frac{1}{\varepsilon_{i}}
$$

where ε_{i} is the fraction of entries labelled with i. Thus

$$
\begin{aligned}
& \mathbf{E}\left[\text { probes }_{2}\right]=\sum_{i=1}^{n+1} \operatorname{Pr}[A(\boldsymbol{\omega})=i] \cdot \mathbf{E}\left[\operatorname{probes}_{2} \mid A(\boldsymbol{\omega})=i\right] \\
& \mathbf{E}\left[\text { probes }_{2}\right]=\sum_{i=1}^{n+1} \frac{\varepsilon_{i}}{\varepsilon} \cdot \frac{1}{\varepsilon_{i}}=\frac{n+1}{\varepsilon} .
\end{aligned}
$$

Average case complexity II

As a result we obtain that the Rewind algorithm does on average

$$
\mathbf{E}[\text { probes }]=\frac{n+2}{\varepsilon}
$$

probes. Since the Rewind algorithm fails with probability

$$
\operatorname{Pr}[\text { failure }]=\frac{\operatorname{Pr}\left[\text { halting } \wedge \omega_{i}=\bar{\omega}_{i}\right]}{\operatorname{Pr}[\text { halting }]} \leq \frac{\kappa}{\varepsilon} \quad \text { where } \quad \kappa=\frac{1}{q}
$$

we make on average

$$
\mathbf{E}\left[\text { probes }^{*}\right]=\frac{1}{\operatorname{Pr}[\text { success }]} \cdot \mathbf{E}[\text { probes }] \leq \frac{\varepsilon}{\varepsilon-\kappa} \cdot \frac{n+2}{\varepsilon}=\frac{n+2}{\varepsilon-\kappa} .
$$

Formal security guarantees

Theorem. If Malice manages to output valid signature by making at most n queries to the random oracle, then there exist an extraction algorithm \mathcal{K} that runs in expected time

$$
\mathbf{E}\left[t_{\mathcal{K}}\right]=\Theta\left(\frac{(n+2) \cdot t_{\text {Malice }}}{\varepsilon-\kappa}\right) \quad \text { where } \quad \kappa=\frac{1}{q}
$$

and extracts the corresponding secret key.
Subjective security guarantee. If I believe that finding a particular discrete logarithm $\log (\mathrm{pk})$ is hard then Malice cannot succeed against pk .

Objective security guarantee. If computing discrete logarithm is hard in the group $\langle g\rangle$ then the Malice success probability over all possible public keys must be small or otherwise Theorem leads to a contradiction.

What do these security guarantees mean in practise?

Average case nature of advantages

The limit on the average advantage over all functions means:
\triangleright An attack algorithm A can be successful on few functions
\triangleright For randomly chosen function family \mathcal{H} the corresponding average advantage is comparable with high probability over the choice of \mathcal{H}.
Such argumentation does not rule out possibility that Malice can choose adaptively a specialised attack algorithm A based on the description of h.

Security against generic attacks

An adaptive choice of a specialised attack algorithm implies that the attack depends on the description of the hash function and not the family \mathcal{H}.

Often, it is advantageous to consider only generic attacks that depend on the description of function family \mathcal{H} and use only black-box access to the function h. Therefore, we can consider two oracles $\mathcal{O}_{\mathcal{H}_{\text {all }}}$ and $\mathcal{O}_{\mathcal{H}}$.

If \mathcal{H} is pseudorandom function family then for any generic attack, we can substitute \mathcal{H} with the $\mathcal{H}_{\text {all }}$ and the success decreases marginally.

Theorem. Security in the random oracle model implies security against generic attacks if \mathcal{H} is a pseudorandom function family.
\triangleright The assumption that Malice uses only generic attacks is subjective.
\triangleright Such an assumption are not universal, i.e., there are settings where this assumption is clearly irrational (various non-instantiability results).

Literature

\square E. Käsper and S. Laur and H. Lipmaa. Black-Box Knowledge Extraction Revisited: Universal Approach with Precise Bounds. Cryptology ePrint Archive, Report 2006/356.
\square M. Bellare and G. Neven. Multi-Signatures in the Plain Public-Key Modeland a General Forking Lemma. ACM CCS 2006.

- D. Pointcheval and Jacques Stern. Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13(3): 361-396, 2000.

