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There are three kinds of lies:

small lies, big lies and statistics.



Quick reminder



Semantic security

m

m ←M0

pk,Epk(m)

Given
– pk

– M0

– Epk(m)
Charlie tries to guess g(m)

m

m ←M0

Given
– M0

Charlie tries to guess g(m)
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Homological classification

NM-CPA

IND-CPA

NM-CCA1

IND-CCA1

NM-CCA2

IND-CCA2

The figure above depicts the relations among various security properties of
public key cryptosystems. In practise one normally needs:

⊲ semantic security that follows IND-CPA security,

⊲ safety against improper usage that follows form IND-CCA1 security,

⊲ non-malleability of ciphertexts that follows form NM-CPA security.
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Homomorphic encryption



Formal definition

A cryptosystem (G, E,D) is homomorphic if for any m0,m1 ←M

Epk(m0) · Epk(m1) ≡ Epk(m0 ⊕m1) .

The equivalence between distributions Epk(m0) ·Epk(m1) and Epk(m0⊕m1)
must hold even if we fix a single ciphertext Epk(m0) = c.

Homomorphic encryption facilitates limited crypto-computing:

• Dsk(c0 · c1) = Dsk(c0)⊕Dsk(c1)

• Assume that 0 ⊕m = m = m ⊕ 0. Then given a ciphertext c · Epk(0),
we can only restore Dsk(c) even if we use infinite computing power.
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Some homomorphic cryptosystems

The RSA cryptosystem is multiplicatively homomorphic over ZN

Epk(m0) · Epk(m1) = m0
e ·m1

e = (m ·m1)
e = Epk(m0 ·m1)

The Goldwasser-Micali cryptosystem is additively homomorphic over Z2

Epk(m0) · Epk(m1) = x2
0 · ym0 · x2

1 · ym1 ≡ x2 · ym0⊕m1 = Epk(m0 ⊕m1) .

The ElGamal cryptosystem is multiplicatively homomorphic over G

Epk(m0) · Epk(m1) = (gk0,m0 · yk0) · (gk1, m1 · yk1)

= (gk0+k1,m0 ·m1 · yk0+k1) ≡ Epk(m0 ·m1) .
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Applications. Oblivious transfer

m0, m1 b

query(b)

reply

Alice should not distinguish
– query(0) and query(1)

Charlie should learn
– mb and nothing more

One-out-of-two oblivious transfer protocol is particularly useful as it allows
us to securely evaluate any function. Oblivious transfer can be used for

⊲ authentication and access control,

⊲ pay-per-view services and untraceable e-cash.
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Homomorphic oblivious transfer

Assumptions

– Alice knows that Bob public key pk is well-formed.

– The cryptosystem is additively homomorphic and |M| is prime.

Protocol

1. Bob sends Epk(b) to Alice.

2. Alice computes c0← Epk(b)
r0 · Epk(m0) for r0←M.

3. Alice computes c1← (Epk(b) · Epk(−1))r1 · Epk(m1) for r1 ←M.

4. Alice sends c0, c1 to Bob. Bob computes mb = Dsk(cb).

Note that

c0 = Epk(br0 + m0) and c1 = Epk((b− 1)r1 + m1) .

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007 6



Security of oblivious transfer

If the cryptosystem is IND-CPA secure then Alice learns nothing about b.

Bob can learn only one of the messages m0 or m1, since

– if b 6= 0 then br0 is uniformly distributed overM,

– if b 6= 1 then (b− 1)r1 is uniformly distributed overM.

Consequently

– if b 6= 0 then Dsk(c0) is uniformly distributed overM,

– if b 6= 1 then Dsk(c1) is uniformly distributed overM.

The latter is sufficient for security since even a unbounded adversary cannot
learn anything beyond Dsk(c0) and Dsk(c1).
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Is Bob guaranteed to know his input b?

What happens if Alice is malicious?



Example instantiations

Since the Goldwasser-Micali cryptosystem is IND-CPA secure and additively
homomorphic over Z2. Then the implementation is straightforward.

We can make the ElGamal cryptosystem additively homomorphic by defining

Epk(m) = (gk, gm · yk)

as

Epk(m0) · Epk(m1) = (gk0, gm0 · yk0) · (gk1, gm1 · yk1)

= (gk0+k1, gm0+m1 · yk0+k1) ≡ Epk(m0 ·m1) .
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Modified protocol

1. Bob sends Epk(b) = (gk, gb · yk) to Alice.

2. Alice computes c0← Epk(b)
r0 · Epk(m0) for r0←M, that is,

c0← (gk, gb · yk)r0 · (gs0,m0 · ys0) = (gkr0+s0, m0 · gbr0 · ykr0+s0)

3. Alice computes c1← (Epk(b) · Epk(−1))r1 · Epk(m1) for r1←M, that is,

c1← (gk−t, gb−1 · yk−t)r1 · (gs1, m1 · ys1)

= (g(k−t)r1+s1, m1 · g(b−1)r1 · y(k−t)r1+s1)

4. Alice sends c0, c1 to Bob. Bob computes mb = Dsk(cb).
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Applications. Blind signatures

Assume that Alice provides a public decryption service:

⊲ Given a ciphertext c replies back the corresponding message m = Dsk(c).

If the cryptosystem is multiplicatively homomorphic then Bob can decrypt
the ciphertext c without revealing the corresponding message to Alice.

1. Bob computes c← c · Epk(m1) for m1 ←M.

2. Bob sends c to Alice. Alice replies m ← Dsk(c).

3. Bob restores the original message m = m ·m−1
1 .

Recall that computing RSA signatures is just a decryption operation.

⇒ We get a protocol, where Alice can blindly sign documents.

⇒ Such signatures show that Alice still trusts Bob.
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Ciphertext modification attacks



Active attack model

Internet
c = Epk(m) c = Epk(m)

A malicious participant may control the communication network and alter
the ciphertexts to bypass various security checks.

A non-malleable encryption has a specific detection mechanism that allows
to detect modified ciphertexts or assures that m and m are unrelated.
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Safety against improper usage

Cleverly crafted ciphertexts or ciphertext-like messages may provide relevant
information about the secret key or even reveal the secret key.

Such attack naturally occur in:

⊲ smart card cracking (Satellite TV, TPM-modules, ID cards)

⊲ authentication protocols (challenge-response protocols)

⊲ side channel attack (timing information, encryption failures)

Minimal security level:

⊲ Attacks reveal information only about currently known ciphertexts

Affected cryptosystems:

– Rabin cryptosystem, some versions of NTRU cryptosystem, etc.
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IND-CCA1 security

Malice is good in breaking security of a cryptosystem (G, E,D) if Malice
can distinguish two games (interactive hypothesis testing):

Game G0 Game G1

1. (pk, sk)← G

2. (m0, m1, σ)← MaliceO1(·)(pk)

3. guess← Malice(σ,Epk(m0))

1. (pk, sk)← G

2. (m0, m1, σ)← MaliceO1(·)(pk)

3. guess← Malice(σ, Epk(m1))

with a non-negligible advantage∗

Adv(Malice) =
∣

∣Pr [guess = 0|G0]− Pr [guess = 0|G1]
∣

∣

where the oracle O1 serves decryption queries, i.e., O1(c) = Dsk(c).

∗Twice larger than defined in the Mao’s book
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Rabin cryptosystem

Key generation G:

1. Choose uniformly 512-bit prime numbers p and q.

2. Compute N = p · q and φ(N) = (p− 1)(q − 1).

3. Choose uniformly e← Z
∗
φ(N) and set d = e−1 mod φ(N).

4. Output sk = (p, q, e, d) and pk = (N, e).

Encryption and decryption:

M = ZN , C =ZN , R = ∅
Epk(m) = m2 mod N Dsk(c) =

√
c mod N .

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007 14



Lunchtime attack

1. Choose x← ZN and set c← m2 mod N .

2. Compute decryption x← O1(c).

3. If x 6= ±x then
– Compute nontrivial square root ξ = x · x−1 mod N

– Compute a nontrivial factors p← gcd(N, ξ + 1) and q = N/p.

– Output a secret key sk = (p, q).

4. Continue from Step 1.

Efficiency analysis

– Each iteration succeeds with probability 1
4.

– With 40 decryption queries the failure probability is 2−80.
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IND-CCA2 security

Malice is good in breaking security of a cryptosystem (G, E,D) if Malice
can distinguish two games (interactive hypothesis testing):

Game G0 Game G1

1. (pk, sk)← G

2. (m0, m1, σ)← MaliceO1(·)(pk)

3. guess← MaliceO2(·)(σ, Epk(m0))

1. (pk, sk)← G

2. (m0, m1, σ)← MaliceO1(·)(pk)

3. guess← MaliceO2(·)(σ,Epk(m1))

with a non-negligible advantage∗

Adv(Malice) =
∣

∣Pr [guess = 0|G0]− Pr [guess = 0|G1]
∣

∣

where the oracles O1 and O2 serve decryption queries, i.e., O1(c) = Dsk(c)
and O2(c) = Dsk(c) for all non-challenge ciphertexts.

∗Twice larger than defined in the Mao’s book
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IND-CCA2 secure cryptosystems

All known IND-CCA2 secure cryptosystems include a non-interactive proof
that the creator of the ciphertexts c knows the corresponding message m:

– the RSA-OAEP cryptosystem in the random oracle model,

– the Cramer-Shoup cryptosystem in standard model,

– the Kurosawa-Desmedt key encapsulation scheme.
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NM-CPA security

b← {0, 1} pk

m0, m1

Epk(mb)

ĉ1, . . . , ĉn, π(·)

Output π(mb,Dsk(ĉ1), . . . ,Dsk(ĉn))

Given Epk(mb)

Charlie tries to create
– ciphertexts ĉ1, . . . , ĉn

– a predicate π(·)
such that

π(mb,Dsk(ĉ1), . . . , Dsk(ĉn)) = 1

b← {0, 1}
b← {0, 1} pk

m0, m1

Epk(mb)

ĉ1, . . . , ĉn, π(·)

Output π(mb,Dsk(ĉ1), . . . ,Dsk(ĉn))

Alice fools Chalie

Still Charlie tries to create
– ciphertexts ĉ1, . . . , ĉn

– a predicate π(·)
such that

π(mb,Dsk(ĉ1), . . . , Dsk(ĉn)) = 1
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NM-CPA security

Charlie is good in breaking security of a cryptosystem (G,E, D) if Charlie
can distinguish two games (interactive hypothesis testing) described in the
precious slide with a non-negligible advantage∗

Adv(Malice) =
∣

∣Pr [Alice = 1|G0]− Pr [Alice = 1|G1]
∣

∣ ,

where Alice always outputs 0 is c ∈ {ĉ1, . . . , ĉn} to eliminate cheating.

The game G1 can be simulated to Charlie without contacting Alice at all.

In other words, the Charlie’s response vector ĉ1, . . . , ĉn is computationally
independent from the challenge ciphertext.
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Homological classification

NM-CPA

IND-CPA

NM-CCA1

IND-CCA1

NM-CCA2

IND-CCA2

Horizontal implications are trivial.

• The adversary just gets more powerful in the row.

Downwards implications are trivial.

• A guess guess can be passed as relation ρ(·) ≡ 0 and ρ(·) ≡ 1.
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IND-CCA2 security implies NM-CC2 security

Assume that Charlie is good in the NM-CCA2 game. Then we can emulate
NM-CCA2 game given access to the oracle O2. Consider Malice:

1. Malice forwards pk to Charlie.

2. Malice forwards m0⊕b,m1⊕b to Challenger for b← {0, 1}.
3. Malice forwards the challenge c to Charlie.

4. Charlie outputs ĉ1, . . . , ĉn and π(·) to Malice who
– uses O2 to recover Dsk(ĉ1), . . . ,Dsk(ĉn),

– outputs π(mb, Dsk(ĉ1), . . . , Dsk(ĉn)) as guess.

Running time

If π(·) is efficiently computable then Malice and Charlie have comparable
running times.
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How well does Malice perform?

In both game Malice outputs 1 only if π(mb, Dsk(ĉ1), . . . ,Dsk(ĉn)) = 1 and
Charlie follows the rules of NM-CCA2 game. If Charlie follows the rules of
NM-CCA2 game then Malice follows the rules of IND-CCA2 game. Now

Pr [Malice = 1|G0] = Pr
[

Alice = 1|GNM-CCA2
0

]

,

Pr [Malice = 1|G1] = Pr
[

Alice = 1|GNM-CCA2
1 , b 6= b

]

.

As

Pr
[

Alice = 1|GNM-CCA2
0

]

= Pr
[

Alice = 1|GNM-CCA2
1 , b = b

]

we obtain...
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How well does Malice perform?

Pr
h

Alice = 1|G
NM-CCA2
0

i

=
2

2
· Pr

h

Alice = 1|G
NM-CCA2
1 , b = b

i

Pr
h

Alice = 1|GNM-CCA2
1

i

=
1

2
· Pr

h

Alice = 1|GNM-CCA2
1 , b = b

i

+
1

2
· Pr

h

Alice = 1|GNM-CCA2
1 , b 6= b

i

Thus

Adv
NM-CCA2

(Charlie) =
1

2
·

˛

˛

˛Pr
h

Alice = 1|G
NM-CCA2
1 , b = b

i

− Pr
h

Alice = 1|G
NM-CCA2
1 , b 6= b

i˛

˛

˛

=
1

2
· |Pr [Malice = 1|G0] − Pr [Malice = 1|G1]| = Adv

IND-CCA2
(Malice) .

That is

AdvNM-CCA1(Charlie) =
1

2
· AdvIND-CCA2(Malice) .
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