# Formal and Strong Security Definitions: IND-CCA security 

There are three kinds of lies: small lies, big lies and statistics.

Sven Laur<br>swen@math.ut.ee

Helsinki University of Technology

## Quick reminder

## Semantic security



## Homological classification



The figure above depicts the relations among various security properties of public key cryptosystems. In practise one normally needs:
$\triangleright$ semantic security that follows IND-CPA security,
$\triangleright$ safety against improper usage that follows form IND-CCA1 security,
$\triangleright$ non-malleability of ciphertexts that follows form NM-CPA security.

## Homomorphic encryption

## Formal definition

A cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is homomorphic if for any $m_{0}, m_{1} \leftarrow \mathcal{M}$

$$
\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right) \equiv \mathcal{E}_{\mathrm{pk}}\left(m_{0} \oplus m_{1}\right) .
$$

The equivalence between distributions $\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)$ and $\mathcal{E}_{\mathrm{pk}}\left(m_{0} \oplus m_{1}\right)$ must hold even if we fix a single ciphertext $\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)=c$.

Homomorphic encryption facilitates limited crypto-computing:

- $\mathcal{D}_{\text {sk }}\left(c_{0} \cdot c_{1}\right)=\mathcal{D}_{\text {sk }}\left(c_{0}\right) \oplus \mathcal{D}_{\text {sk }}\left(c_{1}\right)$
- Assume that $0 \oplus m=m=m \oplus 0$. Then given a ciphertext $c \cdot \mathcal{E}_{\mathrm{pk}}(0)$, we can only restore $\mathcal{D}_{\text {sk }}(c)$ even if we use infinite computing power.


## Some homomorphic cryptosystems

The RSA cryptosystem is multiplicatively homomorphic over $\mathbb{Z}_{N}$

$$
\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)=m_{0}{ }^{e} \cdot m_{1}^{e}=\left(m \cdot m_{1}\right)^{e}=\mathcal{E}_{\mathrm{pk}}\left(m_{0} \cdot m_{1}\right)
$$

The Goldwasser-Micali cryptosystem is additively homomorphic over $\mathbb{Z}_{2}$

$$
\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)=x_{0}^{2} \cdot y^{m_{0}} \cdot x_{1}^{2} \cdot y^{m_{1}} \equiv x^{2} \cdot y^{m_{0} \oplus m_{1}}=\mathcal{E}_{\mathrm{pk}}\left(m_{0} \oplus m_{1}\right)
$$

The EIGamal cryptosystem is multiplicatively homomorphic over $G$

$$
\begin{aligned}
\mathcal{E}_{\mathrm{pk}}\left(m_{0}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right) & =\left(g^{k_{0}}, m_{0} \cdot y^{k_{0}}\right) \cdot\left(g^{k_{1}}, m_{1} \cdot y^{k_{1}}\right) \\
& =\left(g^{k_{0}+k_{1}}, m_{0} \cdot m_{1} \cdot y^{k_{0}+k_{1}}\right) \equiv \mathcal{E}_{\mathrm{pk}}\left(m_{0} \cdot m_{1}\right)
\end{aligned}
$$

## Applications. Oblivious transfer



Alice should not distinguish

- query (0) and query (1)

Charlie should learn

- $m_{b}$ and nothing more

One-out-of-two oblivious transfer protocol is particularly useful as it allows us to securely evaluate any function. Oblivious transfer can be used for
$\triangleright$ authentication and access control,
$\triangleright$ pay-per-view services and untraceable e-cash.

## Homomorphic oblivious transfer

## Assumptions

- Alice knows that Bob public key pk is well-formed.
- The cryptosystem is additively homomorphic and $|\mathcal{M}|$ is prime.


## Protocol

1. Bob sends $\mathcal{E}_{\mathrm{pk}}(b)$ to Alice.
2. Alice computes $c_{0} \leftarrow \mathcal{E}_{\mathrm{pk}}(b)^{r_{0}} \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)$ for $r_{0} \leftarrow \mathcal{M}$.
3. Alice computes $c_{1} \leftarrow\left(\mathcal{E}_{\mathrm{pk}}(b) \cdot \mathcal{E}_{\mathrm{pk}}(-1)\right)^{r_{1}} \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)$ for $r_{1} \leftarrow \mathcal{M}$.
4. Alice sends $c_{0}, c_{1}$ to Bob. Bob computes $m_{b}=\mathcal{D}_{\mathrm{sk}}\left(c_{b}\right)$.

Note that

$$
c_{0}=\mathcal{E}_{\mathrm{pk}}\left(b r_{0}+m_{0}\right) \quad \text { and } \quad c_{1}=\mathcal{E}_{\mathrm{pk}}\left((b-1) r_{1}+m_{1}\right) .
$$

## Security of oblivious transfer

If the cryptosystem is IND-CPA secure then Alice learns nothing about $b$.
Bob can learn only one of the messages $m_{0}$ or $m_{1}$, since

- if $b \neq 0$ then $b r_{0}$ is uniformly distributed over $\mathcal{M}$,
- if $b \neq 1$ then $(b-1) r_{1}$ is uniformly distributed over $\mathcal{M}$.

Consequently

- if $b \neq 0$ then $\mathcal{D}_{\text {sk }}\left(c_{0}\right)$ is uniformly distributed over $\mathcal{M}$,
- if $b \neq 1$ then $\mathcal{D}_{\text {sk }}\left(c_{1}\right)$ is uniformly distributed over $\mathcal{M}$.

The latter is sufficient for security since even a unbounded adversary cannot learn anything beyond $\mathcal{D}_{\text {sk }}\left(c_{0}\right)$ and $\mathcal{D}_{\text {sk }}\left(c_{1}\right)$.

Is Bob guaranteed to know his input $b$ ?
What happens if Alice is malicious?

## Example instantiations

Since the Goldwasser-Micali cryptosystem is IND-CPA secure and additively homomorphic over $\mathbb{Z}_{2}$. Then the implementation is straightforward.

We can make the EIGamal cryptosystem additively homomorphic by defining

$$
\overline{\mathcal{E}}_{\mathrm{pk}}(m)=\left(g^{k}, g^{m} \cdot y^{k}\right)
$$

as

$$
\begin{aligned}
\overline{\mathcal{E}}_{\mathrm{pk}}\left(m_{0}\right) \cdot \overline{\mathcal{\varepsilon}}_{\mathrm{pk}}\left(m_{1}\right) & =\left(g^{k_{0}}, g^{m_{0}} \cdot y^{k_{0}}\right) \cdot\left(g^{k_{1}}, g^{m_{1}} \cdot y^{k_{1}}\right) \\
& =\left(g^{k_{0}+k_{1}}, g^{m_{0}+m_{1}} \cdot y^{k_{0}+k_{1}}\right) \equiv \overline{\mathcal{E}}_{\mathrm{pk}}\left(m_{0} \cdot m_{1}\right)
\end{aligned}
$$

## Modified protocol

1. Bob sends $\overline{\mathcal{E}}_{\mathrm{pk}}(b)=\left(g^{k}, g^{b} \cdot y^{k}\right)$ to Alice.
2. Alice computes $c_{0} \leftarrow \bar{\varepsilon}_{\mathrm{pk}}(b)^{r_{0}} \cdot \varepsilon_{\mathrm{pk}}\left(m_{0}\right)$ for $r_{0} \leftarrow \mathcal{M}$, that is,

$$
c_{0} \leftarrow\left(g^{k}, g^{b} \cdot y^{k}\right)^{r_{0}} \cdot\left(g^{s_{0}}, m_{0} \cdot y^{s_{0}}\right)=\left(g^{k r_{0}+s_{0}}, m_{0} \cdot g^{b r_{0}} \cdot y^{k r_{0}+s_{0}}\right)
$$

3. Alice computes $c_{1} \leftarrow\left(\bar{\varepsilon}_{\mathrm{pk}}(b) \cdot \bar{\varepsilon}_{\mathrm{pk}}(-1)\right)^{r_{1}} \cdot \mathcal{\varepsilon}_{\mathrm{pk}}\left(m_{1}\right)$ for $r_{1} \leftarrow \mathcal{M}$, that is,

$$
\begin{aligned}
c_{1} & \leftarrow\left(g^{k-t}, g^{b-1} \cdot y^{k-t}\right)^{r_{1}} \cdot\left(g^{s_{1}}, m_{1} \cdot y^{s_{1}}\right) \\
& =\left(g^{(k-t) r_{1}+s_{1}}, m_{1} \cdot g^{(b-1) r_{1}} \cdot y^{(k-t) r_{1}+s_{1}}\right)
\end{aligned}
$$

4. Alice sends $c_{0}, c_{1}$ to Bob. Bob computes $m_{b}=\mathcal{D}_{\text {sk }}\left(c_{b}\right)$.

## Applications. Blind signatures

Assume that Alice provides a public decryption service:
$\triangleright$ Given a ciphertext $c$ replies back the corresponding message $m=\mathcal{D}_{\text {sk }}(c)$.
If the cryptosystem is multiplicatively homomorphic then Bob can decrypt the ciphertext $c$ without revealing the corresponding message to Alice.

1. Bob computes $\bar{c} \leftarrow c \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)$ for $m_{1} \leftarrow \mathcal{M}$.
2. Bob sends $\bar{c}$ to Alice. Alice replies $\bar{m} \leftarrow \mathcal{D}_{\text {sk }}(\bar{c})$.
3. Bob restores the original message $m=\bar{m} \cdot m_{1}^{-1}$.

Recall that computing RSA signatures is just a decryption operation.
$\Rightarrow$ We get a protocol, where Alice can blindly sign documents.
$\Rightarrow$ Such signatures show that Alice still trusts Bob.

## Ciphertext modification attacks

## Active attack model



A malicious participant may control the communication network and alter the ciphertexts to bypass various security checks.

A non-malleable encryption has a specific detection mechanism that allows to detect modified ciphertexts or assures that $m$ and $\bar{m}$ are unrelated.

## Safety against improper usage

Cleverly crafted ciphertexts or ciphertext-like messages may provide relevant information about the secret key or even reveal the secret key.

Such attack naturally occur in:
$\triangleright$ smart card cracking (Satellite TV, TPM-modules, ID cards)
$\triangleright$ authentication protocols (challenge-response protocols)
$\triangleright$ side channel attack (timing information, encryption failures)

## Minimal security level:

$\triangleright$ Attacks reveal information only about currently known ciphertexts

## Affected cryptosystems:

- Rabin cryptosystem, some versions of NTRU cryptosystem, etc.


## IND-CCA1 security

Malice is good in breaking security of a cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ if Malice can distinguish two games (interactive hypothesis testing):

| Game $\mathcal{G}_{0}$ | Game $\mathcal{G}_{1}$ |
| :--- | :--- |
| 1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$ | 1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$ |
| 2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice $\mathcal{O}_{1}(\cdot)(\mathrm{pk})$ | 2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice ${ }^{\mathcal{O}_{1}(\cdot)}(\mathrm{pk})$ |
| 3. guess $\leftarrow \operatorname{Malice}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)\right)$ | 3. guess $\leftarrow \operatorname{Malice}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)\right)$ |

with a non-negligible advantage*

$$
\operatorname{Adv}(\text { Malice })=\mid \operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{1}\right] \mid
$$

where the oracle $\mathcal{O}_{1}$ serves decryption queries, i.e., $\mathcal{O}_{1}(c)=\mathcal{D}_{\text {sk }}(c)$.
*Twice larger than defined in the Mao's book

## Rabin cryptosystem

Key generation $\mathcal{G}$ :

1. Choose uniformly 512 -bit prime numbers $p$ and $q$.
2. Compute $N=p \cdot q$ and $\phi(N)=(p-1)(q-1)$.
3. Choose uniformly $e \leftarrow \mathbb{Z}_{\phi(N)}^{*}$ and set $d=e^{-1} \bmod \phi(N)$.
4. Output $\mathrm{sk}=(p, q, e, d)$ and $\mathrm{pk}=(N, e)$.

## Encryption and decryption:

$$
\begin{aligned}
\mathcal{M}=\mathbb{Z}_{N}, \quad \mathcal{C}=\mathbb{Z}_{N}, \quad \mathcal{R} & =\emptyset \\
\mathcal{E}_{\mathrm{pk}}(m)=m^{2} \quad \bmod N \quad \mathcal{D}_{\mathrm{sk}}(c) & =\sqrt{c} \quad \bmod N .
\end{aligned}
$$

## Lunchtime attack

1. Choose $x \leftarrow \mathbb{Z}_{N}$ and set $c \leftarrow m^{2} \bmod N$.
2. Compute decryption $\bar{x} \leftarrow \mathcal{O}_{1}(c)$.
3. If $\bar{x} \neq \pm x$ then

- Compute nontrivial square root $\xi=\bar{x} \cdot x^{-1} \bmod N$
- Compute a nontrivial factors $p \leftarrow \operatorname{gcd}(N, \xi+1)$ and $q=N / p$.
- Output a secret key sk $=(p, q)$.

4. Continue from Step 1.

## Efficiency analysis

- Each iteration succeeds with probability $\frac{1}{4}$.
- With 40 decryption queries the failure probability is $2^{-80}$.


## IND-CCA2 security

Malice is good in breaking security of a cryptosystem ( $\mathcal{G}, \mathcal{E}, \mathcal{D}$ ) if Malice can distinguish two games (interactive hypothesis testing):

| Game $\mathcal{G}_{0}$ | Game $\mathcal{G}_{1}$ |
| :--- | :--- |
| 1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$ | 1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$ |
| 2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice $^{\mathcal{O}_{1}(\cdot)}(\mathrm{pk})$ | 2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice ${ }^{\mathcal{O}_{1}(\cdot)}(\mathrm{pk})$ |
| 3. guess $\leftarrow$ Malice $^{\mathcal{O}_{2}(\cdot)}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)\right)$ | 3. guess $\leftarrow$ Malice $^{\mathcal{O}_{2}(\cdot)}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)\right)$ |

with a non-negligible advantage*

$$
\operatorname{Adv}(\text { Malice })=\mid \operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{1}\right] \mid
$$

where the oracles $\mathcal{O}_{1}$ and $\mathcal{O}_{2}$ serve decryption queries, i.e., $\mathcal{O}_{1}(c)=\mathcal{D}_{\text {sk }}(c)$ and $\mathcal{O}_{2}(c)=\mathcal{D}_{\text {sk }}(c)$ for all non-challenge ciphertexts.
*Twice larger than defined in the Mao's book

## IND-CCA2 secure cryptosystems

All known IND-CCA2 secure cryptosystems include a non-interactive proof that the creator of the ciphertexts $c$ knows the corresponding message $m$ :

- the RSA-OAEP cryptosystem in the random oracle model,
- the Cramer-Shoup cryptosystem in standard model,
- the Kurosawa-Desmedt key encapsulation scheme.


## NM-CPA security



## NM-CPA security

Charlie is good in breaking security of a cryptosystem ( $\mathcal{G}, \mathcal{E}, \mathcal{D}$ ) if Charlie can distinguish two games (interactive hypothesis testing) described in the precious slide with a non-negligible advantage*

$$
\operatorname{Adv}(\text { Malice })=\mid \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}\right] \mid,
$$

where Alice always outputs 0 is $c \in\left\{\hat{c}_{1}, \ldots, \hat{c}_{n}\right\}$ to eliminate cheating.
The game $\mathcal{G}_{1}$ can be simulated to Charlie without contacting Alice at all.
In other words, the Charlie's response vector $\hat{c}_{1}, \ldots, \hat{c}_{n}$ is computationally independent from the challenge ciphertext.

## Homological classification



Horizontal implications are trivial.

- The adversary just gets more powerful in the row.

Downwards implications are trivial.

- A guess guess can be passed as relation $\rho(\cdot) \equiv 0$ and $\rho(\cdot) \equiv 1$.


## IND-CCA2 security implies NM-CC2 security

Assume that Charlie is good in the NM-CCA2 game. Then we can emulate NM-CCA2 game given access to the oracle $\mathcal{O}_{2}$. Consider Malice:

1. Malice forwards pk to Charlie.
2. Malice forwards $m_{0 \oplus b}, m_{1 \oplus b}$ to Challenger for $b \leftarrow\{0,1\}$.
3. Malice forwards the challenge $c$ to Charlie.
4. Charlie outputs $\hat{c}_{1}, \ldots, \hat{c}_{n}$ and $\pi(\cdot)$ to Malice who

- uses $\mathcal{O}_{2}$ to recover $\mathcal{D}_{\mathrm{sk}}\left(\hat{c}_{1}\right), \ldots, \mathcal{D}_{\mathrm{sk}}\left(\hat{c}_{n}\right)$,
- outputs $\pi\left(m_{b}, \mathcal{D}_{\text {sk }}\left(\hat{c}_{1}\right), \ldots, \mathcal{D}_{\text {sk }}\left(\hat{c}_{n}\right)\right)$ as guess.


## Running time

If $\pi(\cdot)$ is efficiently computable then Malice and Charlie have comparable running times.

## How well does Malice perform?

In both game Malice outputs 1 only if $\pi\left(m_{b}, \mathcal{D}_{\text {sk }}\left(\hat{c}_{1}\right), \ldots, \mathcal{D}_{\text {sk }}\left(\hat{c}_{n}\right)\right)=1$ and Charlie follows the rules of NM-CCA2 game. If Charlie follows the rules of NM-CCA2 game then Malice follows the rules of IND-CCA2 game. Now

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{G}_{0}\right]=\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{0}^{\text {NM-CCA2 }}\right] \\
& \operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{G}_{1}\right]=\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 }}, b \neq \bar{b}\right] .
\end{aligned}
$$

As

$$
\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{0}^{\text {NM-CCA } 2}\right]=\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\mathrm{NM}-\mathrm{CCA} 2}, b=\bar{b}\right]
$$

we obtain...

## How well does Malice perform?

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{0}^{\text {NM-CCA2 }}\right]=\frac{2}{2} \cdot \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA } 2}, b=\bar{b}\right] \\
& \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 }}\right]=\frac{1}{2} \cdot \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 } 2}, b=\bar{b}\right]+\frac{1}{2} \cdot \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 }}, b \neq \bar{b}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\operatorname{Adv}^{\text {NM-CCA2 }}(\text { Charlie }) & \left.\left.=\frac{1}{2} \cdot \right\rvert\, \operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 }}, b=\bar{b}\right]-\operatorname{Pr}\left[\text { Alice }=1 \mid \mathcal{G}_{1}^{\text {NM-CCA2 }}, b \neq \bar{b}\right] \right\rvert\, \\
& \left.\left.=\frac{1}{2} \cdot \right\rvert\, \operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{G}_{1}\right] \right\rvert\,=\text { Adv }^{\text {IND-CCA2 }}(\text { Malice }) .
\end{aligned}
$$

That is

$$
\text { Adv }{ }^{\text {NM-CCA1 }}(\text { Charlie })=\frac{1}{2} \cdot \text { Adv }^{\operatorname{IND-CCA2}}(\text { Malice }) .
$$

