Formal and Strong Security Definitions: IND-CCA security

There are three kinds of lies: small lies, big lies and statistics.

Sven Laur swen@math.ut.ee

Helsinki University of Technology

Quick reminder

Semantic security

Homological classification

The figure above depicts the relations among various security properties of public key cryptosystems. In practise one normally needs:

- ▷ semantic security that follows IND-CPA security,
- ▷ safety against improper usage that follows form IND-CCA1 security,
- ▷ non-malleability of ciphertexts that follows form NM-CPA security.

Homomorphic encryption

Formal definition

A cryptosystem $(\mathfrak{G}, \mathcal{E}, \mathcal{D})$ is homomorphic if for any $m_0, m_1 \leftarrow \mathcal{M}$

$$\mathcal{E}_{\mathsf{pk}}(m_0) \cdot \mathcal{E}_{\mathsf{pk}}(m_1) \equiv \mathcal{E}_{\mathsf{pk}}(m_0 \oplus m_1)$$

The equivalence between distributions $\mathcal{E}_{pk}(m_0) \cdot \mathcal{E}_{pk}(m_1)$ and $\mathcal{E}_{pk}(m_0 \oplus m_1)$ must hold even if we fix a single ciphertext $\mathcal{E}_{pk}(m_0) = c$.

Homomorphic encryption facilitates limited crypto-computing:

- $\mathcal{D}_{\mathsf{sk}}(c_0 \cdot c_1) = \mathcal{D}_{\mathsf{sk}}(c_0) \oplus \mathcal{D}_{\mathsf{sk}}(c_1)$
- Assume that $0 \oplus m = m = m \oplus 0$. Then given a ciphertext $c \cdot \mathcal{E}_{pk}(0)$, we can only restore $\mathcal{D}_{sk}(c)$ even if we use infinite computing power.

Some homomorphic cryptosystems

The RSA cryptosystem is multiplicatively homomorphic over \mathbb{Z}_N

$$\mathcal{E}_{\mathsf{pk}}(m_0) \cdot \mathcal{E}_{\mathsf{pk}}(m_1) = m_0^{\ e} \cdot m_1^{\ e} = (m \cdot m_1)^{\ e} = \mathcal{E}_{\mathsf{pk}}(m_0 \cdot m_1)$$

The Goldwasser-Micali cryptosystem is additively homomorphic over \mathbb{Z}_2

 $\mathcal{E}_{\mathsf{pk}}(m_0) \cdot \mathcal{E}_{\mathsf{pk}}(m_1) = x_0^2 \cdot y^{m_0} \cdot x_1^2 \cdot y^{m_1} \equiv x^2 \cdot y^{m_0 \oplus m_1} = \mathcal{E}_{\mathsf{pk}}(m_0 \oplus m_1) \ .$

The ElGamal cryptosystem is multiplicatively homomorphic over ${\cal G}$

$$\begin{split} \mathcal{E}_{\mathsf{pk}}(m_0) \cdot \mathcal{E}_{\mathsf{pk}}(m_1) &= (g^{k_0}, m_0 \cdot y^{k_0}) \cdot (g^{k_1}, m_1 \cdot y^{k_1}) \\ &= (g^{k_0 + k_1}, m_0 \cdot m_1 \cdot y^{k_0 + k_1}) \equiv \mathcal{E}_{\mathsf{pk}}(m_0 \cdot m_1) \end{split}$$

Applications. Oblivious transfer

Alice should not distinguish -query(0) and query(1)

Charlie should learn $- m_b$ and nothing more

One-out-of-two oblivious transfer protocol is particularly useful as it allows us to securely evaluate any function. Oblivious transfer can be used for

- ▷ authentication and access control,
- ▷ pay-per-view services and untraceable e-cash.

Homomorphic oblivious transfer

Assumptions

- Alice knows that Bob public key pk is well-formed.
- The cryptosystem is additively homomorphic and $|\mathcal{M}|$ is prime.

Protocol

- 1. Bob sends $\mathcal{E}_{pk}(\boldsymbol{b})$ to Alice.
- 2. Alice computes $c_0 \leftarrow \mathcal{E}_{\mathsf{pk}}(\mathbf{b})^{r_0} \cdot \mathcal{E}_{\mathsf{pk}}(\mathbf{m_0})$ for $r_0 \leftarrow \mathcal{M}$.
- 3. Alice computes $c_1 \leftarrow (\mathcal{E}_{\mathsf{pk}}(\mathbf{b}) \cdot \mathcal{E}_{\mathsf{pk}}(-1))^{r_1} \cdot \mathcal{E}_{\mathsf{pk}}(\mathbf{m_1})$ for $r_1 \leftarrow \mathcal{M}$.
- 4. Alice sends c_0, c_1 to Bob. Bob computes $m_b = \mathcal{D}_{sk}(c_b)$.

Note that

$$c_0 = \mathcal{E}_{pk}(br_0 + m_0)$$
 and $c_1 = \mathcal{E}_{pk}((b-1)r_1 + m_1)$.

Security of oblivious transfer

If the cryptosystem is IND-CPA secure then Alice learns nothing about b.

Bob can learn only one of the messages m_0 or m_1 , since

- if $b \neq 0$ then br_0 is uniformly distributed over \mathcal{M} ,
- if $b \neq 1$ then $(b 1)r_1$ is uniformly distributed over \mathcal{M} .

Consequently

- if $b \neq 0$ then $\mathcal{D}_{sk}(c_0)$ is uniformly distributed over \mathcal{M} ,
- if $b \neq 1$ then $\mathcal{D}_{sk}(c_1)$ is uniformly distributed over \mathcal{M} .

The latter is sufficient for security since even a unbounded adversary cannot learn anything beyond $\mathcal{D}_{sk}(c_0)$ and $\mathcal{D}_{sk}(c_1)$.

Is Bob guaranteed to know his input *b*? What happens if Alice is malicious?

Example instantiations

Since the Goldwasser-Micali cryptosystem is IND-CPA secure and additively homomorphic over \mathbb{Z}_2 . Then the implementation is straightforward.

We can make the ElGamal cryptosystem additively homomorphic by defining

$$\overline{\mathcal{E}}_{\mathsf{pk}}(\underline{m}) = (g^k, g^m \cdot y^k)$$

as

$$\begin{split} \overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{m}_{0}) \cdot \overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{m}_{1}) &= (g^{k_{0}}, g^{\mathbf{m}_{0}} \cdot y^{k_{0}}) \cdot (g^{k_{1}}, g^{\mathbf{m}_{1}} \cdot y^{k_{1}}) \\ &= (g^{k_{0}+k_{1}}, g^{\mathbf{m}_{0}+\mathbf{m}_{1}} \cdot y^{k_{0}+k_{1}}) \equiv \overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{m}_{0} \cdot \mathbf{m}_{1}) \end{split}$$

Modified protocol

- 1. Bob sends $\overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{b}) = (g^k, g^{\mathbf{b}} \cdot y^k)$ to Alice.
- 2. Alice computes $c_0 \leftarrow \overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{b})^{r_0} \cdot \mathcal{E}_{\mathsf{pk}}(\mathbf{m_0})$ for $r_0 \leftarrow \mathcal{M}$, that is,

$$c_0 \leftarrow (g^k, g^{\mathbf{b}} \cdot y^k)^{r_0} \cdot (g^{s_0}, \mathbf{m_0} \cdot y^{s_0}) = (g^{kr_0 + s_0}, \mathbf{m_0} \cdot g^{\mathbf{b}r_0} \cdot y^{kr_0 + s_0})$$

3. Alice computes $c_1 \leftarrow (\overline{\mathcal{E}}_{\mathsf{pk}}(\mathbf{b}) \cdot \overline{\mathcal{E}}_{\mathsf{pk}}(-1))^{r_1} \cdot \mathcal{E}_{\mathsf{pk}}(\mathbf{m_1})$ for $r_1 \leftarrow \mathcal{M}$, that is,

$$c_{1} \leftarrow (g^{k-t}, g^{\mathbf{b}-1} \cdot y^{k-t})^{r_{1}} \cdot (g^{s_{1}}, \mathbf{m_{1}} \cdot y^{s_{1}})$$

= $(g^{(k-t)r_{1}+s_{1}}, \mathbf{m_{1}} \cdot g^{(\mathbf{b}-1)r_{1}} \cdot y^{(k-t)r_{1}+s_{1}})$

4. Alice sends c_0, c_1 to Bob. Bob computes $m_b = \mathcal{D}_{sk}(c_b)$.

Applications. Blind signatures

Assume that Alice provides a public decryption service:

▷ Given a ciphertext c replies back the corresponding message $m = \mathcal{D}_{sk}(c)$.

If the cryptosystem is multiplicatively homomorphic then Bob can decrypt the ciphertext c without revealing the corresponding message to Alice.

- 1. Bob computes $\overline{c} \leftarrow c \cdot \mathcal{E}_{\mathsf{pk}}(m_1)$ for $m_1 \leftarrow \mathcal{M}$.
- 2. Bob sends \overline{c} to Alice. Alice replies $\overline{m} \leftarrow \mathcal{D}_{sk}(\overline{c})$.
- 3. Bob restores the original message $m = \overline{m} \cdot m_1^{-1}$.

Recall that computing RSA signatures is just a decryption operation.

- \Rightarrow We get a protocol, where Alice can blindly sign documents.
- \Rightarrow Such signatures show that Alice still trusts Bob.

Ciphertext modification attacks

Active attack model

A malicious participant may control the communication network and alter the ciphertexts to bypass various security checks.

A non-malleable encryption has a specific detection mechanism that allows to detect modified ciphertexts or assures that m and \overline{m} are unrelated.

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007

Safety against improper usage

Cleverly crafted ciphertexts or ciphertext-like messages may provide relevant information about the secret key or even reveal the secret key.

Such attack naturally occur in:

- ▷ smart card cracking (Satellite TV, TPM-modules, ID cards)
- ▷ authentication protocols (challenge-response protocols)
- ▷ side channel attack (timing information, encryption failures)

Minimal security level:

> Attacks reveal information only about currently known ciphertexts

Affected cryptosystems:

- Rabin cryptosystem, some versions of NTRU cryptosystem, etc.

IND-CCA1 security

Malice is good in breaking security of a cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ if Malice can distinguish two games (interactive hypothesis testing):

Game \mathcal{G}_0	$Game\ \mathcal{G}_1$
1. $(pk, sk) \leftarrow \mathcal{G}$	1. $(pk,sk) \leftarrow \mathfrak{G}$
2. $(m_0, m_1, \sigma) \leftarrow Malice^{\mathfrak{O}_1(\cdot)}(pk)$	2. $(m_0, m_1, \sigma) \leftarrow Malice^{\mathfrak{O}_1(\cdot)}(pk)$
3. guess $\leftarrow Malice(\sigma, \mathcal{E}_{pk}(m_0))$	3. guess $\leftarrow Malice(\sigma, \mathcal{E}_{pk}(m_1))$

with a *non-negligible* advantage*

$$\mathsf{Adv}(\mathsf{Malice}) = \left| \Pr\left[\mathsf{guess} = 0 | \mathcal{G}_0\right] - \Pr\left[\mathsf{guess} = 0 | \mathcal{G}_1\right] \right|$$

where the oracle \mathcal{O}_1 serves decryption queries, i.e., $\mathcal{O}_1(c) = \mathcal{D}_{sk}(c)$.

*Twice larger than defined in the Mao's book

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007

Rabin cryptosystem

Key generation 9:

- 1. Choose uniformly 512-bit prime numbers p and q.
- 2. Compute $N = p \cdot q$ and $\phi(N) = (p-1)(q-1)$.
- 3. Choose uniformly $e \leftarrow \mathbb{Z}^*_{\phi(N)}$ and set $d = e^{-1} \mod \phi(N)$.

4. Output
$$\mathbf{sk} = (p, q, e, d)$$
 and $\mathbf{pk} = (N, e)$.

Encryption and decryption:

$$\mathcal{M} = \mathbb{Z}_N, \quad \mathcal{C} = \mathbb{Z}_N, \quad \mathcal{R} = \emptyset$$

 $\mathcal{E}_{\mathsf{pk}}(m) = m^2 \mod N \qquad \mathcal{D}_{\mathsf{sk}}(c) = \sqrt{c} \mod N$

Lunchtime attack

- 1. Choose $x \leftarrow \mathbb{Z}_N$ and set $c \leftarrow m^2 \mod N$.
- 2. Compute decryption $\overline{x} \leftarrow \mathcal{O}_1(c)$.
- 3. If $\overline{x} \neq \pm x$ then
 - Compute nontrivial square root $\xi = \overline{x} \cdot x^{-1} \mod N$
 - Compute a nontrivial factors $p \leftarrow \gcd(N, \xi + 1)$ and q = N/p.
 - Output a secret key $\mathbf{sk} = (p, q)$.
- 4. Continue from Step 1.

Efficiency analysis

- Each iteration succeeds with probability $\frac{1}{4}$.
- With 40 decryption queries the failure probability is 2^{-80} .

IND-CCA2 security

Malice is good in breaking security of a cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ if Malice can distinguish two games (interactive hypothesis testing):

Game \mathcal{G}_0	$Game\ \mathcal{G}_1$
1. $(pk, sk) \leftarrow \mathcal{G}$	1. $(pk, sk) \leftarrow \mathcal{G}$
2. $(m_0, m_1, \sigma) \leftarrow Malice^{\mathfrak{O}_1(\cdot)}(pk)$	2. $(\mathbf{m_0}, \mathbf{m_1}, \sigma) \leftarrow Malice^{\mathfrak{O}_1(\cdot)}(pk)$
3. guess \leftarrow Malice ^{$\mathcal{O}_2(\cdot)$} $(\sigma, \mathcal{E}_{pk}(m_0))$	3. guess $\leftarrow Malice^{\mathfrak{O}_2(\cdot)}(\sigma, \mathcal{E}_{pk}(m_1))$

with a *non-negligible* $advantage^*$

$$\mathsf{Adv}(\mathsf{Malice}) = \left| \Pr\left[\mathsf{guess} = 0 | \mathcal{G}_0 \right] - \Pr\left[\mathsf{guess} = 0 | \mathcal{G}_1 \right] \right|$$

where the oracles \mathcal{O}_1 and \mathcal{O}_2 serve decryption queries, i.e., $\mathcal{O}_1(c) = \mathcal{D}_{sk}(c)$ and $\mathcal{O}_2(c) = \mathcal{D}_{sk}(c)$ for all non-challenge ciphertexts.

*Twice larger than defined in the Mao's book

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007

IND-CCA2 secure cryptosystems

All known IND-CCA2 secure cryptosystems include a non-interactive proof that the creator of the ciphertexts c knows the corresponding message m:

- the RSA-OAEP cryptosystem in the random oracle model,
- the Cramer-Shoup cryptosystem in standard model,
- the Kurosawa-Desmedt key encapsulation scheme.

NM-CPA security

NM-CPA security

Charlie is good in breaking security of a cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ if Charlie can distinguish two games (interactive hypothesis testing) described in the precious slide with a *non-negligible* advantage^{*}

$$\operatorname{Adv}(\operatorname{Malice}) = \left| \operatorname{Pr} \left[\operatorname{Alice} = 1 | \mathcal{G}_0 \right] - \operatorname{Pr} \left[\operatorname{Alice} = 1 | \mathcal{G}_1 \right] \right| ,$$

where Alice always outputs 0 is $c \in \{\hat{c}_1, \ldots, \hat{c}_n\}$ to eliminate cheating.

The game \mathcal{G}_1 can be simulated to Charlie without contacting Alice at all.

In other words, the Charlie's response vector $\hat{c}_1, \ldots, \hat{c}_n$ is computationally independent from the challenge ciphertext.

Homological classification

Horizontal implications are trivial.

• The adversary just gets more powerful in the row.

Downwards implications are trivial.

• A guess guess can be passed as relation $\rho(\cdot) \equiv 0$ and $\rho(\cdot) \equiv 1$.

IND-CCA2 security implies NM-CC2 security

Assume that Charlie is good in the NM-CCA2 game. Then we can emulate NM-CCA2 game given access to the oracle O_2 . Consider Malice:

- 1. Malice forwards pk to Charlie.
- 2. Malice forwards $m_{0\oplus b}, m_{1\oplus b}$ to Challenger for $b \leftarrow \{0, 1\}$.
- 3. Malice forwards the challenge c to Charlie.
- 4. Charlie outputs $\hat{c}_1, \ldots, \hat{c}_n$ and $\pi(\cdot)$ to Malice who
 - uses \mathcal{O}_2 to recover $\mathcal{D}_{\mathsf{sk}}(\hat{c}_1), \ldots, \mathcal{D}_{\mathsf{sk}}(\hat{c}_n)$,
 - outputs $\pi(m_b, \mathcal{D}_{\mathsf{sk}}(\hat{c}_1), \dots, \mathcal{D}_{\mathsf{sk}}(\hat{c}_n))$ as guess.

Running time

If $\pi(\cdot)$ is efficiently computable then Malice and Charlie have comparable running times.

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 20, 2007

How well does Malice perform?

In both game Malice outputs 1 only if $\pi(m_b, \mathcal{D}_{sk}(\hat{c}_1), \dots, \mathcal{D}_{sk}(\hat{c}_n)) = 1$ and Charlie follows the rules of NM-CCA2 game. If Charlie follows the rules of NM-CCA2 game then Malice follows the rules of IND-CCA2 game. Now

$$\begin{split} &\Pr\left[\mathsf{Malice} = 1 | \mathcal{G}_0\right] = \Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_0^{\mathsf{NM-CCA2}}\right] \;\;, \\ &\Pr\left[\mathsf{Malice} = 1 | \mathcal{G}_1\right] = \Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_1^{\mathsf{NM-CCA2}}, b \neq \overline{b}\right] \end{split}$$

As

$$\Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_0^{\mathsf{NM-CCA2}} \right] = \Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_1^{\mathsf{NM-CCA2}}, b = \overline{b}\right]$$

we obtain...

How well does Malice perform?

$$\Pr\left[\mathsf{Alice} = 1|\mathcal{G}_0^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}\right] = \frac{2}{2} \cdot \Pr\left[\mathsf{Alice} = 1|\mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}, b = \overline{b}\right]$$
$$\Pr\left[\mathsf{Alice} = 1|\mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}\right] = \frac{1}{2} \cdot \Pr\left[\mathsf{Alice} = 1|\mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}, b = \overline{b}\right] + \frac{1}{2} \cdot \Pr\left[\mathsf{Alice} = 1|\mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}, b \neq \overline{b}\right]$$

Thus

$$\begin{aligned} \mathsf{Adv}^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}(\mathsf{Charlie}) &= \frac{1}{2} \cdot \left| \Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}, b = \overline{b} \right] - \Pr\left[\mathsf{Alice} = 1 | \mathcal{G}_1^{\mathsf{NM}\mathsf{-}\mathsf{CCA2}}, b \neq \overline{b} \right] \right| \\ &= \frac{1}{2} \cdot \left| \Pr\left[\mathsf{Malice} = 1 | \mathcal{G}_0 \right] - \Pr\left[\mathsf{Malice} = 1 | \mathcal{G}_1 \right] \right| = \mathsf{Adv}^{\mathsf{IND}\mathsf{-}\mathsf{CCA2}}(\mathsf{Malice}) \; . \end{aligned}$$

That is

$$\operatorname{Adv}^{\operatorname{NM-CCA1}}(\operatorname{Charlie}) = \frac{1}{2} \cdot \operatorname{Adv}^{\operatorname{IND-CCA2}}(\operatorname{Malice})$$
.