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There are three kinds of lies:

small lies, big lies and statistics.



Basic theoretical notions



Formal syntax of a cryptosystem I

Various domains associated with the cryptosystem:

M – a set of plausible messages (plaintexts);

C – a set of possible cryptograms (ciphertexts);

R – random coins used by the encryption algorithm.

Parameters used by the encryption and decryption algorithms:

pk – a public key (public knowledge needed to generate valid encryptions);

sk – a secret key (knowledge that allows efficient decryption of ciphertexts).
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Formal syntax of a cryptosystem II

Algorithms that define a cryptosystem:

G – a randomised key generation algorithm;

Epk – a randomised encryption algorithm;

Dsk – a deterministic decryption algorithm.

The key generation algorithm G outputs a key pair (pk, sk).

The encryption algorithm is an efficient mapping Epk :M×R→ C.

The decryption algorithm is an efficient mapping Dsk : C →M.

A cryptosystem must be functional

∀(pk, sk)← G, ∀m ∈M, ∀r ∈ R : Dsk(Epk(m; r)) = m.

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 15, 2007 3



Example. RSA-1024 cryptosystem

Key generation G:

1. Choose uniformly 512-bit prime numbers p and q.

2. Compute N = p · q and φ(N) = (p− 1)(q − 1).

3. Choose uniformly e← Z
∗
φ(N) and set d = e−1 mod φ(N).

4. Output sk = (p, q, e, d) and pk = (N, e).

Encryption and decryption:

M = ZN , C =ZN , R = ∅

Epk(m) = me mod N Dsk(c) = cd mod N .
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When is a cryptosystem secure?

It is rather hard to tell when a cryptosystem is secure. Instead people often
specify when a cryptosystem is broken.

• Complete key recovery:
Given pk and Epk(m1), . . . , Epk(mn), the adversary deduces sk in a
feasible time with a reasonable probability.

• Complete plaintext recovery:
Given pk and Epk(m1), . . . , Epk(mn), the adversary is able to recover mi

in a feasible time with a reasonable probability.

• Partial plaintext recovery:
Given pk and Epk(m1), . . . ,Epk(mn), the adversary is able to recover a
part of mi in a feasible time with a reasonable probability.
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Formal approach. Hypothesis testing

We can formalise partial recovery using hypothesis testing:

1. Challenger generates (pk, sk)← G.

2. Challenger chooses a message m from a distribution M0.

3. Challenger sends c← Epk(m) and pk to Malice.

4. Malice must decide whether a hypothesis H holds for m or not.

The distribution M0 characterises Malice’s knowledge about the input.

The hypothesis H can describe various properties of m such as:

• The message m is form a message spaceM0 (trivial hypothesis).

• The message m is equal to 0 (simple hypothesis).

• The message m is larger than 500 (complex hypothesis).
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Simplest guessing game

Consider the simplest attack scenario:

1. M0 is a uniform distribution over the messages m0 and m1.

2. H0 and H1 denote simple hypotheses [m = m0] and [m = m1].

3. Malice must choose between these hypotheses H0 and H1.

The probability of an incorrect guess

Pr [Failure] = Pr [H0] · Pr [Malice = 1|H0] + Pr [H1] · Pr [Malice = 0|H1]

=
1

2
·
(
Pr [Malice = 1|H0]
︸ ︷︷ ︸

False negatives

+ Pr [Malice = 0|H1]
︸ ︷︷ ︸

False positives

)

=
1

2
+

1

2
·
(
Pr [Malice = 1|H0]− Pr [Malice = 1|H1]

)

︸ ︷︷ ︸
±Adv(Malice)

.
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IND-CPA security

Malice is good in breaking security of a cryptosystem (G, E,D) if Malice
can distinguish two games (interactive hypothesis testing):

Game G0 Game G1

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk)

3. guess← Malice(σ, Epk(m0))

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk)

3. guess← Malice(σ,Epk(m1))

with a non-negligible advantage∗

Adv(Malice) =
∣
∣Pr [guess = 0|G0]− Pr [guess = 0|G1]

∣
∣

=
∣
∣Pr [guess = 1|G0]− Pr [guess = 1|G1]

∣
∣

∗Twice larger than defined in the Mao’s book
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Is the RSA cryptosystem IND-CPA secure?

What does it mean in practise?



Bit-guessing game with a fair coin

Consider Protocol 14.1 in Mao’s book:

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk) where σ denotes the internal state.

3. The oracle O flips a fair coin b← {0, 1} and sets c← Epk(mb).

4. guess← Malice(σ, c)

The success probability

Pr [Success] = Pr [b = 0 ∧ guess = 0] + Pr [b = 1 ∧ guess = 1]

=
1

2
· Pr [guess = 0|G0] +

1

2
·
(
1− Pr [guess = 0|G1]

)

=
1

2
±

1

2
· Adv(Malice)
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Bit-guessing game with a biased coin

For clarity let Pr [b = 0] ≤ Pr [b = 1]. Then

Pr [Success] ≤ Pr [b = 1] ·
(
Pr [guess = 0|G0] + Pr [guess = 1|G1]

)

≤ Pr [b = 1] + Pr [b = 1] · Adv(Malice) ,

Pr [Success] ≥ Pr [b = 0] ·
(
Pr [guess = 0|G0] + Pr [guess = 1|G1]

)

≥ Pr [b = 0]− Pr [b = 0] · Adv(Malice) .

Hence, the advantage determines guessing precision

Pr [b = 0]− Adv(Malice) ≤ Pr [Success] ≤ Pr [b = 1] + Adv(Malice) .
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Beyond bit-guessing games

The coin-flipping game is a simplified setting, where the input distribution
M0 is defined over {m0,m1} and Malice must choose between m0 and m1.

But there are more general cases:

– M0 might be defined over many elements of M.

– Malice might accept or reject complex hypotheses H.

– Malice might try to test many hypotheses H1, . . . ,Hs simultaneously.

– Malice might try to predict a function g(m).

All these settings can be modelled as prediction tasks, where Malice specifies
the input distribution M0. What are the corresponding functions?
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Semantic security

Consider a complex attack scenario:

1. The oracle O runs G and sends pk to Charlie.

2. Charlie describes a distribution M0 to the oracle O.

3. The oracle O samples m←M0 and sends c← Epk(m) to Charlie.

4. Charlie outputs his guess guess of g(m).

Trivial attack

Always choose a prediction i of g(m) that maximises Pr [g(m) = i|M0].

Normalised guessing advantage

Advguess(Charlie) = Pr [guess = g(m)]−max {Pr [g(m) = i|M0]}
︸ ︷︷ ︸

Adv(Triv)
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IND-CPA security implies semantic security

If Charlie is good at predicting an efficiently computable function g :M→ Z

then we can construct an efficient IND-CPA adversary Malice:

1. Malice forwards pk to Charlie.

2. Charlie describesM0 to Malice.

3. Malice independently samples m0←M0 and m1 ←M0.

4. Malice forwards c = Epk(mb) to Charlie.

5. Charlie outputs his guess guess to Malice who
– outputs 0 if guess = g(m0),
– outputs 1 if guess 6= g(m0) .

Running time

If g(m0) is efficiently computable and sampling procedure for the distribution
M0 is efficient then Malice and Charlie have comparable running times.
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How well does Malice perform?

In both games Malice outputs 0 only if guess = g(m0) and thus

Pr [Malice = 0|G0] = Advguess(Charlie) + Adv(Triv) ,

Pr [Malice = 0|G1] =
∑

pk,c,rch

Pr [pk, c, rch] · Pr [guess = g(m0)|pk, c, rch,G1] ,

where rch denotes the random coins used by Charlie. As the triple (pk, c, rch)
completely determines the reply guess, we can express

Pr [guess = g(m0)|pk, c, rch,G1] = Pr [m0 ←M0 : g(m0) = guess]

≤ max {Pr [g(m) = i|M0]} = Adv(Triv) .
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How well does Malice perform?

Thus, we obtain

Pr [Malice = 0|G0] = Advguess(Charlie) + Adv(Triv) ,

Pr [Malice = 0|G1] =
∑

pk,c,rch

Pr [pk, c, rch] · Pr [guess = g(m0)|pk, c, rch,G1]

≤
∑

pk,c,rch

Pr [pk, c, rch] · Adv(Triv) = Adv(Triv) .

In other words Charlie and Malice have the same advantage

Adv(Malice) = |Pr [Malice = 0|G0]− Pr [Malice = 0|G1]| ≥ Advguess(Charlie) .
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What if the function g is not efficiently computable?

What if M0 cannot be sampled efficiently?

What does it mean in practise?



Historical references

Shaft Goldwasser and Silvio Micali, Probabilistic Encryption & How To

Play Mental Poker Keeping Secret All Partial Information, 1982.

• Non-adaptive choice ofM0 and semantic security for any function.

Contemporary treatment of semantic security:

• Mihir Bellare, Anand Desai, E. Jokipii and Phillip Rogaway, A Concrete

Security Treatment of Symmetric Encryption, 1997.

• Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway,
Relations among Notions of Security for Public-Key Encryption Schemes,
1998.
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Mental poker



Commutative cryptosystems

A cryptosystem (G, E,D) is commutative if for any valid public keys pkA, pkB

∀m ∈M : EpkA
(EpkB

(m)) = EpkB
(EpkA

(m)).

In particular it implies

m = DskA
(DskB

(EpkA
(EpkB

(m)))) = DskB
(DskA

(EpkB
(EpkA

(m)))).

The latter allows to swap the order of encryption and decryption operations.
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Mental poker protocol

1. Alice sends randomly shuffled encryptions EpkA
(♠2), . . . ,EpkA

(♥A).

2. Bob chooses randomly cA, cB and sends cA,EpkB
(cB) to Alice.

3. Alice sends DskA
(EpkB

(cB)) to Bob and locally outputs DskA
(cA).

4. Bob outputs locally DskB
(DskA

(EpkB
(cB))) = DskA

(cB).

5. Alice sends her pkA to Bob. Bob sends his pkB to Alice.

RSA with shared modulus N = pq, and keys (pkA, skA) = (eA, dA) and
(pkB, skB) = (eB, dB) such that

eAdA = 1 mod φ(N) eBdB = 1 mod φ(N)

is insecure after Step 5. Why?
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Attacks against mental poker game

Recall that RSA encryption preserves quadratic residuocity and both parties
can compute it. Leaking residuocity can give an edge to Bob.

Brute force attack. Let ♠2, . . . ,♥A be encoded as 1, . . . , 52. Then
corresponding encryptions are 1, 2eA, . . . , 56eA modulo N . Obviously,

2eA · 2eA = 4eA mod N, . . . , 7eA · 7eA = 49eA mod N

and Bob can with high probability separate encryptions of 2, . . . , 7.

Similar connections allow Bob to reveal most of the cards.

There are completely insecure encodings for the cards:

– Vanilla RSA is not applicable for secure encryption.

– Vanilla RSA is not IND-CPA secure.
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IND-CPA secure cryptosystems



Goldwasser-Micali cryptosystem

Famous conjecture. Let N be a large RSA modulus. Then without
factorisation of N it is infeasible to determine whether a random c ∈ JN(1)
is a quadratic residue or not.

Key generation. Generate safe primes p, q ∈ P and choose quadratic
non-residue y ∈ JN(1) modulo N = pq. Set pk = (N, y), sk = (p, q).

Encryption. First choose a random x← Z
∗
N and then compute

Epk(0) = x2 mod N and Epk(1) = yx2 mod N.

Decryption. Given c, compute c1 mod p and c2 mod q and use Euler’s
criterion to test whether c is a quadratic residue or not.
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ElGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice Bob

x← Z|G|
y=gx

−−−→ k ← Z|G|

gk

←−−

gxk = (gk)x gxk = (gx)k

with one-time pad using multiplication in G = 〈g〉 as encoding rule

Epk(m) = (gk, m · gxk) = (gk,m · yk) for all elements m ∈ G

with a public key pk = y = gx and a secret key sk = x.
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Decisional Diffie-Hellman Assumption (DDH)

DDH Assumption. For a fixed group G, Charlie can distinguish two games

Game G0 Game G1

1. x, k ← Zq, q = |G|

2. guess← Charlie(g, gx, gk, gxk)

1. x, k, c← Zq, q = |G|

2. guess← Charlie(g, gx, gk, gc)

with a negligible advantage

Adv(Charlie) = |Pr [guess = 0|G0]− Pr [guess = 0|G1]| .

The Diffie-Hellman key exchange protocol is secure under the DDH
assumption, as Charlie cannot tell the difference between gxk and gc.
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ElGamal is IND-CPA secure

If the Diffie-Hellman key exchange protocol is secure then the ElGamal
cryptosystem must be secure, as the one-time pad is unbreakable.

Let Malice be good in IND-CPA game. Now Charlie given (g, gx, gk, z):

1. Sets pk = gx and (m0,m1, σ)← Malice(pk).

2. Tosses a fair coin b← {0, 1} and set c = (gk, mbz).

3. Gets guess← Malice(σ, c).

4. If guess = b returns 0 else outputs 1.

We argue that this is a good strategy to win the DDH game:

• In the game G0, we simulate the bit guessing game.

• In the game G1, the guess guess is independent form b.
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Charlie’s advantage in the game G1

Note that c = (gk, mbz) is uniformly chosen from G × G in the game G1

and we can rewrite (simplify) the code of Charlie (for the game G1):

1. Set pk = gx and (m0,m1, σ)← Malice(pk).

2. Toss a fair coin b← {0, 1} and set c = (gk, c2) for c2← G.

3. Get guess← Malice(σ, c).

4. If guess = b return 0 else output 1.
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Charlie’s advantage in the game G1

Note that c = (gk, mbz) is uniformly chosen from G × G in the game G1

and we can rewrite (simplify) the code of Charlie (for the game G1):

1. Set pk = gx and (m0,m1, σ)← Malice(pk).

2. Set c = (gk, c2) for c2← G.

3. Get guess← Malice(σ, c).

4. Toss a fair coin b← {0, 1}. If guess = b return 0 else output 1.

Therefore

Pr [Charlie = 0|G1] =
1

2
.
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Charlie’s advantage in the DDH game

By combining estimates

Pr [Charlie = 0|G1] =
1

2

Pr [Charlie = 0|G0] = Pr [Success in bit guessing game]

=
1

2
±

1

2
· Adv(Malice)

we obtain

Adv(Charlie) =
1

2
· Adv(Malice)

T-79.5502 Advanced Course in Cryptology, IND-CPA security, November 15, 2007 30



Why some instantiations of ElGamal fail?

If the message m /∈ G then mgxk is not one-time pad, for example

G = 〈2 mod 6〉 =⇒ m2xk = ±m mod 3

and a single bit of information is always revealed.

Fix a generator of g ∈ Z
∗
p for large p ∈ P such that DDH holds.

If public key y = gx is quadratic residue (QR), then yk is also QR.

m is QR if and only if myk is QR

Fix I: Choose g ∈ QR so that 〈g〉 = QR and m ∈ QR.

Fix II: Choose almost regular hash function h : G → {0, 1}ℓ and define

Epk(m) = (gk, h(gxk)⊕m) for m ∈ {0, 1}ℓ. Then h(gxk) is almost uniform.
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Hybrid encryption

Assume that (G, E,D) is a IND-CPA secure cryptosystem and prg is a secure
pseudorandom generator (secure stream-cipher, e.g. AES in counter mode).

Encrypt. For m ∈ {0, 1}ℓ choose seed ∈M randomly and compute

E∗
pk(m) = (Epk(seed), prg(seed)⊕m)

Decrypt. Given (c1, c2) compute seed← Dsk(c1) and output c2⊕prg(seed).

Theorem. The hybrid encryption is IND-CPA secure.
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Efficiency considerations



How much time can Malice spend?

Usually, it is assumed that Malice uses a probabilistic polynomial time
algorithm to launch the attack. What does it mean?

Example
1994 – 426 bit RSA challenge broken.
2003 – 576 bit RSA challenge broken.
2005 – 640 bit RSA challenge broken.

Instead of a concrete encryption scheme RSA is a family of cryptosystems
and Malice can run algorithm polynomial in the length k of RSA modulus.

Negligible advantage means that the advantage decreases faster than k−c

for any c > 0.
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A concrete example

For simplicity, imagine that Malice runs algorithms that finish in time k5.

0 20 40 60 80 100
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0
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0

Advantage

Adv(A1)

Adv(A2)
Adv(A3)

Adv(A4) · · · Obtainable security

k
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Uniform vs non-uniform security

For each polynomial-time algorithm Ai the advantage was negligible:
=⇒ scheme is secure against polynomial uniform adversaries.

If Malice chooses a good algorithm for each k separately
=⇒ she breaks the scheme with advantage 1

2;
=⇒ scheme is insecure against polynomial non-uniform adversaries.

In practise, each adversary has limited resources
=⇒ Given time t, Malice should not achieve Adv(Malice) ≥ εcritical.

If scheme is secure against non-uniform adversaries then for large k:
=⇒ Adv(Malice) ≤ εcritical for all t time algorithms;
=⇒ the scheme is still efficiently implementable.
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Is non-uniform security model adequate in practise∗?

Consider the case of browser certificates:

• Several Verisign certificates have been issued in 1996–1998.

• As a potential adversary knows pk, he can design a special crack algorithm
for that pk only. He does not care about other values of pk.

• Maybe a special bit pattern of N = pq allows more efficient factorisation?

Why can’t we fix pk in the non-uniform model?

Is there a model that describes reality without problems∗?

Does security against (non-)uniform adversaries heuristically imply security
in real applications∗?
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