Formal and Strong Security Definitions: IND-CPA security

There are three kinds of lies: small lies, big lies and statistics.

Sven Laur
swen@math.ut.ee

Helsinki University of Technology

Basic theoretical notions

Formal syntax of a cryptosystem I

Various domains associated with the cryptosystem:
\mathcal{M} - a set of plausible messages (plaintexts);
\mathcal{C} - a set of possible cryptograms (ciphertexts);
\mathcal{R} - random coins used by the encryption algorithm.

Parameters used by the encryption and decryption algorithms:
pk - a public key (public knowledge needed to generate valid encryptions);
sk - a secret key (knowledge that allows efficient decryption of ciphertexts).

Formal syntax of a cryptosystem II

Algorithms that define a cryptosystem:
\mathcal{G} - a randomised key generation algorithm;
$\mathcal{E}_{\mathrm{pk}}$ - a randomised encryption algorithm;
$\mathcal{D}_{\text {sk }}$ - a deterministic decryption algorithm.
The key generation algorithm \mathcal{G} outputs a key pair (pk, sk).
The encryption algorithm is an efficient mapping $\mathcal{E}_{\mathrm{pk}}: \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{C}$.
The decryption algorithm is an efficient mapping $\mathcal{D}_{\text {sk }}: \mathcal{C} \rightarrow \mathcal{M}$.
A cryptosystem must be functional

$$
\forall(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}, \forall m \in \mathcal{M}, \forall r \in \mathcal{R}: \quad \mathcal{D}_{\mathrm{sk}}\left(\mathcal{E}_{\mathrm{pk}}(m ; r)\right)=m
$$

Example. RSA-1024 cryptosystem

Key generation \mathcal{G} :

1. Choose uniformly 512 -bit prime numbers p and q.
2. Compute $N=p \cdot q$ and $\phi(N)=(p-1)(q-1)$.
3. Choose uniformly $e \leftarrow \mathbb{Z}_{\phi(N)}^{*}$ and set $d=e^{-1} \bmod \phi(N)$.
4. Output $\mathrm{sk}=(p, q, e, d)$ and $\mathrm{pk}=(N, e)$.

Encryption and decryption:

$$
\begin{aligned}
\mathcal{M}=\mathbb{Z}_{N}, \quad \mathcal{C}=\mathbb{Z}_{N}, \quad \mathcal{R} & =\emptyset \\
\mathcal{E}_{\mathrm{pk}}(m)=m^{e} \quad \bmod N \quad \mathcal{D}_{\mathrm{sk}}(c) & =c^{d} \quad \bmod N .
\end{aligned}
$$

When is a cryptosystem secure?

It is rather hard to tell when a cryptosystem is secure. Instead people often specify when a cryptosystem is broken.

- Complete key recovery:

Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary deduces $s k$ in a feasible time with a reasonable probability.

- Complete plaintext recovery:

Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary is able to recover m_{i} in a feasible time with a reasonable probability.

- Partial plaintext recovery:

Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary is able to recover a part of m_{i} in a feasible time with a reasonable probability.

Formal approach. Hypothesis testing

We can formalise partial recovery using hypothesis testing:

1. Challenger generates $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$.
2. Challenger chooses a message m from a distribution \mathcal{M}_{0}.
3. Challenger sends $c \leftarrow \mathcal{E}_{\mathrm{pk}}(m)$ and pk to Malice.
4. Malice must decide whether a hypothesis \mathcal{H} holds for m or not.

The distribution \mathcal{M}_{0} characterises Malice's knowledge about the input.
The hypothesis \mathcal{H} can describe various properties of m such as:

- The message m is form a message space \mathcal{M}_{0} (trivial hypothesis).
- The message m is equal to 0 (simple hypothesis).
- The message m is larger than 500 (complex hypothesis).

Simplest guessing game

Consider the simplest attack scenario:

1. \mathcal{M}_{0} is a uniform distribution over the messages m_{0} and m_{1}.
2. \mathcal{H}_{0} and \mathcal{H}_{1} denote simple hypotheses $\left[m=m_{0}\right]$ and $\left[m=m_{1}\right]$.
3. Malice must choose between these hypotheses \mathcal{H}_{0} and \mathcal{H}_{1}.

The probability of an incorrect guess

$$
\begin{aligned}
\operatorname{Pr}[\text { Failure }] & =\operatorname{Pr}\left[\mathcal{H}_{0}\right] \cdot \operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{H}_{0}\right]+\operatorname{Pr}\left[\mathcal{H}_{1}\right] \cdot \operatorname{Pr}\left[\operatorname{Malice}=0 \mid \mathcal{H}_{1}\right] \\
& =\frac{1}{2} \cdot(\underbrace{\operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{H}_{0}\right]}_{\text {False negatives }}+\underbrace{\operatorname{Pr}\left[\operatorname{Malice}=0 \mid \mathcal{H}_{1}\right]}_{\text {False positives }}) \\
& =\frac{1}{2}+\frac{1}{2} \cdot \underbrace{\left(\operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{H}_{0}\right]-\operatorname{Pr}\left[\text { Malice }=1 \mid \mathcal{H}_{1}\right]\right.}_{ \pm \text {Adv }(\text { Malice })})
\end{aligned}
$$

IND-CPA security

Malice is good in breaking security of a cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ if Malice can distinguish two games (interactive hypothesis testing):

Game \mathcal{G}_{0}	Game \mathcal{G}_{1}
1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$	1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$
2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk)	2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk)
3. guess $\leftarrow \operatorname{Malice}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)\right)$	3. guess \leftarrow Malice $\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)\right)$

with a non-negligible advantage*

$$
\begin{aligned}
\text { Adv }(\text { Malice }) & =\mid \operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{1}\right] \mid \\
& =\mid \operatorname{Pr}\left[\text { guess }=1 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { guess }=1 \mid \mathcal{G}_{1}\right] \mid
\end{aligned}
$$

*Twice larger than defined in the Mao's book

Is the RSA cryptosystem IND-CPA secure?

What does it mean in practise?

Bit-guessing game with a fair coin

Consider Protocol 14.1 in Mao's book:

1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$
2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk) where σ denotes the internal state.
3. The oracle \mathcal{O} flips a fair coin $b \leftarrow\{0,1\}$ and sets $c \leftarrow \mathcal{E}_{\mathrm{pk}}\left(m_{b}\right)$.
4. guess $\leftarrow \operatorname{Malice}(\sigma, c)$

The success probability

$$
\begin{aligned}
\operatorname{Pr}[\text { Success }] & =\operatorname{Pr}[b=0 \wedge \text { guess }=0]+\operatorname{Pr}[b=1 \wedge \text { guess }=1] \\
& =\frac{1}{2} \cdot \operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]+\frac{1}{2} \cdot\left(1-\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{1}\right]\right) \\
& =\frac{1}{2} \pm \frac{1}{2} \cdot \operatorname{Adv}(\text { Malice })
\end{aligned}
$$

Bit-guessing game with a biased coin

For clarity let $\operatorname{Pr}[b=0] \leq \operatorname{Pr}[b=1]$. Then

$$
\begin{aligned}
\operatorname{Pr}[\text { Success }] & \leq \operatorname{Pr}[b=1] \cdot\left(\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]+\operatorname{Pr}\left[\text { guess }=1 \mid \mathcal{G}_{1}\right]\right) \\
& \leq \operatorname{Pr}[b=1]+\operatorname{Pr}[b=1] \cdot \operatorname{Adv}(\text { Malice }), \\
\operatorname{Pr}[\text { Success }] & \geq \operatorname{Pr}[b=0] \cdot\left(\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]+\operatorname{Pr}\left[\text { guess }=1 \mid \mathcal{G}_{1}\right]\right) \\
& \geq \operatorname{Pr}[b=0]-\operatorname{Pr}[b=0] \cdot \operatorname{Adv}(\text { Malice }) .
\end{aligned}
$$

Hence, the advantage determines guessing precision

$$
\operatorname{Pr}[b=0]-\operatorname{Adv}(\text { Malice }) \leq \operatorname{Pr}[\text { Success }] \leq \operatorname{Pr}[b=1]+\operatorname{Adv}(\text { Malice }) .
$$

Beyond bit-guessing games

The coin-flipping game is a simplified setting, where the input distribution \mathcal{M}_{0} is defined over $\left\{m_{0}, m_{1}\right\}$ and Malice must choose between m_{0} and m_{1}.

But there are more general cases:

- \mathcal{M}_{0} might be defined over many elements of \mathcal{M}.
- Malice might accept or reject complex hypotheses \mathcal{H}.
- Malice might try to test many hypotheses $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$ simultaneously.
- Malice might try to predict a function $g(m)$.

All these settings can be modelled as prediction tasks, where Malice specifies the input distribution \mathcal{M}_{0}. What are the corresponding functions?

Semantic security

Consider a complex attack scenario:

1. The oracle \mathcal{O} runs \mathcal{G} and sends pk to Charlie.
2. Charlie describes a distribution \mathcal{M}_{0} to the oracle \mathcal{O}.
3. The oracle \mathcal{O} samples $m \leftarrow \mathcal{M}_{0}$ and sends $c \leftarrow \mathcal{E}_{\mathrm{pk}}(m)$ to Charlie.
4. Charlie outputs his guess guess of $g(m)$.

Trivial attack

Always choose a prediction i of $g(m)$ that maximises $\operatorname{Pr}\left[g(m)=i \mid \mathcal{M}_{0}\right]$.
Normalised guessing advantage

$$
\text { Adv }^{\text {guess }}(\text { Charlie })=\operatorname{Pr}[\text { guess }=g(m)]-\underbrace{\max \left\{\operatorname{Pr}\left[g(m)=i \mid \mathcal{M}_{0}\right]\right\}}_{\text {Adv (Triv })}
$$

IND-CPA security implies semantic security

If Charlie is good at predicting an efficiently computable function $g: \mathcal{M} \rightarrow \mathbb{Z}$ then we can construct an efficient IND-CPA adversary Malice:

1. Malice forwards pk to Charlie.
2. Charlie describes \mathcal{M}_{0} to Malice.
3. Malice independently samples $m_{0} \leftarrow \mathcal{M}_{0}$ and $m_{1} \leftarrow \mathcal{M}_{0}$.
4. Malice forwards $c=\mathcal{E}_{\mathrm{pk}}\left(m_{b}\right)$ to Charlie.
5. Charlie outputs his guess guess to Malice who

- outputs 0 if guess $=g\left(m_{0}\right)$,
- outputs 1 if guess $\neq g\left(m_{0}\right)$.

Running time

If $g\left(m_{0}\right)$ is efficiently computable and sampling procedure for the distribution \mathcal{M}_{0} is efficient then Malice and Charlie have comparable running times.

How well does Malice perform?

In both games Malice outputs 0 only if guess $=g\left(m_{0}\right)$ and thus

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { Malice }=0 \mid \mathcal{G}_{0}\right]=\operatorname{Adv} \mathrm{Adess}^{\text {gu }}(\text { Charlie })+\operatorname{Adv}(\text { Triv }), \\
& \operatorname{Pr}\left[\text { Malice }=0 \mid \mathcal{G}_{1}\right]=\sum_{\mathrm{pk}, c, r_{c h}} \operatorname{Pr}\left[\mathrm{pk}, c, r_{c h}\right] \cdot \operatorname{Pr}\left[\text { guess }=g\left(m_{0}\right) \mid \mathrm{pk}, c, r_{c h}, \mathcal{G}_{1}\right],
\end{aligned}
$$

where $r_{c h}$ denotes the random coins used by Charlie. As the triple ($\mathrm{pk}, c, r_{c h}$) completely determines the reply guess, we can express

$$
\begin{aligned}
\operatorname{Pr}\left[\text { guess }=g\left(m_{0}\right) \mid \mathrm{pk}, c, r_{c h}, \mathcal{G}_{1}\right] & =\operatorname{Pr}\left[m_{0} \leftarrow \mathcal{M}_{0}: g\left(m_{0}\right)=\text { guess }\right] \\
& \leq \max \left\{\operatorname{Pr}\left[g(m)=i \mid \mathcal{M}_{0}\right]\right\}=\operatorname{Adv}(\text { Triv }) .
\end{aligned}
$$

How well does Malice perform?

Thus, we obtain

$$
\begin{aligned}
\operatorname{Pr}\left[\text { Malice }=0 \mid \mathcal{G}_{0}\right] & =\operatorname{Adv} \mathrm{Av}^{\text {guess }}(\text { Charlie })+\operatorname{Adv}(\text { Triv }), \\
\operatorname{Pr}\left[\text { Malice }=0 \mid \mathcal{G}_{1}\right] & =\sum_{\text {pk }, c, r_{c h}} \operatorname{Pr}\left[\mathrm{pk}, c, r_{c h}\right] \cdot \operatorname{Pr}\left[\text { guess }=g\left(m_{0}\right) \mid \mathrm{pk}, c, r_{c h}, \mathcal{G}_{1}\right] \\
& \leq \sum_{\text {pk }, c, r_{c h}} \operatorname{Pr}\left[\mathrm{pk}, c, r_{c h}\right] \cdot \operatorname{Adv}(\text { Triv })=\operatorname{Adv}(\text { Triv }) .
\end{aligned}
$$

In other words Charlie and Malice have the same advantage
$\operatorname{Adv}($ Malice $)=\mid \operatorname{Pr}\left[\right.$ Malice $\left.=0 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\right.$ Malice $\left.=0 \mid \mathcal{G}_{1}\right] \mid \geq \operatorname{Adv}^{\text {guess }}$ (Charlie).

What if the function g is not efficiently computable? What if \mathcal{M}_{0} cannot be sampled efficiently?

What does it mean in practise?

Historical references

Shaft Goldwasser and Silvio Micali, Probabilistic Encryption \& How To Play Mental Poker Keeping Secret All Partial Information, 1982.

- Non-adaptive choice of \mathcal{M}_{0} and semantic security for any function.

Contemporary treatment of semantic security:

- Mihir Bellare, Anand Desai, E. Jokipii and Phillip Rogaway, A Concrete Security Treatment of Symmetric Encryption, 1997.
- Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway, Relations among Notions of Security for Public-Key Encryption Schemes, 1998.

Mental poker

Commutative cryptosystems

A cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is commutative if for any valid public keys $\mathrm{pk}_{\mathrm{A}}, \mathrm{pk}_{\mathrm{B}}$

$$
\forall m \in \mathcal{M}: \quad \varepsilon_{p k_{A}}\left(\varepsilon_{\mathrm{pk}_{B}}(m)\right)=\varepsilon_{\mathrm{pk}_{B}}\left(\varepsilon_{\mathrm{pk}_{A}}(m)\right) .
$$

In particular it implies

$$
m=\mathcal{D}_{\mathrm{sk}_{A}}\left(\mathcal{D}_{\mathrm{sk}_{\mathrm{B}}}\left(\mathcal{E}_{\mathrm{pk}}\left(\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}(m)\right)\right)\right)=\mathcal{D}_{\mathrm{sk}_{\mathrm{B}}}\left(\mathcal{D}_{\mathrm{sk}_{A}}\left(\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(\mathcal{E}_{\mathrm{pk}}^{A}(~(m))\right)\right) .\right.
$$

The latter allows to swap the order of encryption and decryption operations.

Mental poker protocol

1. Alice sends randomly shuffled encryptions $\mathcal{E}_{\mathrm{pk}_{\mathrm{A}}}(\boldsymbol{\uparrow} 2), \ldots, \mathcal{E}_{\mathrm{pk}_{\mathrm{A}}}(\Omega \mathrm{A})$.
2. Bob chooses randomly c_{A}, c_{B} and sends $c_{A}, \mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(c_{B}\right)$ to Alice.
3. Alice sends $\mathcal{D}_{\text {sk }_{A}}\left(\mathcal{E}_{\mathrm{pk}_{B}}\left(c_{B}\right)\right)$ to Bob and locally outputs $\mathcal{D}_{\mathrm{sk}_{A}}\left(c_{A}\right)$.
4. Bob outputs locally $\mathcal{D}_{\text {sk }_{B}}\left(\mathcal{D}_{\text {sk }_{A}}\left(\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(c_{B}\right)\right)\right)=\mathcal{D}_{\text {sk }_{A}}\left(c_{B}\right)$.
5. Alice sends her $p k_{A}$ to Bob. Bob sends his $p k_{B}$ to Alice.

RSA with shared modulus $N=p q$, and keys $\left(\mathrm{pk}_{\mathrm{A}}, \mathrm{sk}_{\mathrm{A}}\right)=\left(e_{A}, d_{A}\right)$ and $\left(\mathrm{pk}_{\mathrm{B}}, \mathrm{sk}_{\mathrm{B}}\right)=\left(e_{B}, d_{B}\right)$ such that

$$
e_{A} d_{A}=1 \quad \bmod \phi(N) \quad e_{B} d_{B}=1 \quad \bmod \phi(N)
$$

is insecure after Step 5. Why?

Attacks against mental poker game

Recall that RSA encryption preserves quadratic residuocity and both parties can compute it. Leaking residuocity can give an edge to Bob.

Brute force attack. Let $\boldsymbol{\wedge} 2, \ldots, \bigcirc \mathrm{~A}$ be encoded as $1, \ldots, 52$. Then corresponding encryptions are $1,2^{e_{A}}, \ldots, 56^{e_{A}}$ modulo N. Obviously,

$$
2^{e_{A}} \cdot 2^{e_{A}}=4^{e_{A}} \quad \bmod N, \quad \ldots, \quad 7^{e_{A}} \cdot 7^{e_{A}}=49^{e_{A}} \quad \bmod N
$$

and Bob can with high probability separate encryptions of $2, \ldots, 7$.
Similar connections allow Bob to reveal most of the cards.
There are completely insecure encodings for the cards:

- Vanilla RSA is not applicable for secure encryption.
- Vanilla RSA is not IND-CPA secure.

IND-CPA secure cryptosystems

Goldwasser-Micali cryptosystem

Famous conjecture. Let N be a large RSA modulus. Then without factorisation of N it is infeasible to determine whether a random $c \in J_{N}(1)$ is a quadratic residue or not.

Key generation. Generate safe primes $p, q \in \mathbb{P}$ and choose quadratic non-residue $y \in J_{N}(1)$ modulo $N=p q$. Set pk $=(N, y)$, sk $=(p, q)$.

Encryption. First choose a random $x \leftarrow \mathbb{Z}_{N}^{*}$ and then compute

$$
\mathcal{E}_{\mathrm{pk}}(0)=x^{2} \quad \bmod N \quad \text { and } \quad \mathcal{E}_{\mathrm{pk}}(1)=y x^{2} \quad \bmod N .
$$

Decryption. Given c, compute $c_{1} \bmod p$ and $c_{2} \bmod q$ and use Euler's criterion to test whether c is a quadratic residue or not.

EIGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice

$$
x \leftarrow \mathbb{Z}_{|G|} \quad \xrightarrow{y=g^{x}} \quad k \leftarrow \mathbb{Z}_{|G|}
$$

$$
\stackrel{g^{k}}{\overleftarrow{4}}
$$

$$
g^{x k}=\left(g^{k}\right)^{x}
$$

$$
g^{x k}=\left(g^{x}\right)^{k}
$$

with one-time pad using multiplication in $G=\langle g\rangle$ as encoding rule

$$
\mathcal{E}_{\mathrm{pk}}(m)=\left(g^{k}, m \cdot g^{x k}\right)=\left(g^{k}, m \cdot y^{k}\right) \quad \text { for all elements } m \in G
$$

with a public key $\mathrm{pk}=y=g^{x}$ and a secret key $\mathrm{sk}=x$.

Decisional Diffie-Hellman Assumption (DDH)

DDH Assumption. For a fixed group G, Charlie can distinguish two games

Game \mathcal{G}_{0}	Game \mathcal{G}_{1}
1. $x, k \leftarrow \mathbb{Z}_{q}, q=\|G\|$	1. $x, k, c \leftarrow \mathbb{Z}_{q}, q=\|G\|$
2. guess $\leftarrow \operatorname{Charlie}\left(g, g^{x}, g^{k}, g^{x k}\right)$	2. guess $\leftarrow \operatorname{Charlie}\left(g, g^{x}, g^{k}, g^{c}\right)$

with a negligible advantage

$$
\operatorname{Adv}(\text { Charlie })=\mid \operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{0}\right]-\operatorname{Pr}\left[\text { guess }=0 \mid \mathcal{G}_{1}\right] \mid .
$$

The Diffie-Hellman key exchange protocol is secure under the DDH assumption, as Charlie cannot tell the difference between $g^{x k}$ and g^{c}.

EIGamal is IND-CPA secure

If the Diffie-Hellman key exchange protocol is secure then the EIGamal cryptosystem must be secure, as the one-time pad is unbreakable.

Let Malice be good in IND-CPA game. Now Charlie given $\left(g, g^{x}, g^{k}, z\right)$:

1. Sets $\mathrm{pk}=g^{x}$ and $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk).
2. Tosses a fair coin $b \leftarrow\{0,1\}$ and set $c=\left(g^{k}, m_{b} z\right)$.
3. Gets guess \leftarrow Malice (σ, c).
4. If guess $=b$ returns 0 else outputs 1 .

We argue that this is a good strategy to win the DDH game:

- In the game \mathcal{G}_{0}, we simulate the bit guessing game.
- In the game \mathcal{G}_{1}, the guess guess is independent form b.

Charlie's advantage in the game \mathcal{G}_{1}

Note that $c=\left(g^{k}, m_{b} z\right)$ is uniformly chosen from $G \times G$ in the game \mathcal{G}_{1} and we can rewrite (simplify) the code of Charlie (for the game \mathcal{G}_{1}):

1. Set $\mathrm{pk}=g^{x}$ and $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk).
2. Toss a fair coin $b \leftarrow\{0,1\}$ and set $c=\left(g^{k}, c_{2}\right)$ for $c_{2} \leftarrow G$.
3. Get guess \leftarrow Malice (σ, c).
4. If guess $=b$ return 0 else output 1 .

Charlie's advantage in the game \mathcal{G}_{1}

Note that $c=\left(g^{k}, m_{b} z\right)$ is uniformly chosen from $G \times G$ in the game \mathcal{G}_{1} and we can rewrite (simplify) the code of Charlie (for the game \mathcal{G}_{1}):

1. Set $\mathrm{pk}=g^{x}$ and $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk).
2. Set $c=\left(g^{k}, c_{2}\right)$ for $c_{2} \leftarrow G$.
3. Get guess \leftarrow Malice (σ, c).
4. Toss a fair coin $b \leftarrow\{0,1\}$. If guess $=b$ return 0 else output 1 .

Therefore

$$
\operatorname{Pr}\left[\text { Charlie }=0 \mid \mathcal{G}_{1}\right]=\frac{1}{2} .
$$

Charlie's advantage in the DDH game

By combining estimates

$$
\begin{aligned}
\operatorname{Pr}\left[\text { Charlie }=0 \mid \mathcal{G}_{1}\right] & =\frac{1}{2} \\
\operatorname{Pr}\left[\text { Charlie }=0 \mid \mathcal{G}_{0}\right] & =\operatorname{Pr}[\text { Success in bit guessing game }] \\
& =\frac{1}{2} \pm \frac{1}{2} \cdot \operatorname{Adv}(\text { Malice })
\end{aligned}
$$

we obtain

$$
\operatorname{Adv}(\text { Charlie })=\frac{1}{2} \cdot \operatorname{Adv}(\text { Malice })
$$

Why some instantiations of EIGamal fail?

If the message $m \notin G$ then $m g^{x k}$ is not one-time pad, for example

$$
G=\langle 2 \bmod 6\rangle \quad \Longrightarrow \quad m 2^{x k}= \pm m \bmod 3
$$

and a single bit of information is always revealed.
Fix a generator of $g \in \mathbb{Z}_{p}^{*}$ for large $p \in \mathbb{P}$ such that DDH holds. If public key $y=g^{x}$ is quadratic residue (QR), then y^{k} is also QR .

$$
m \text { is } Q R \text { if and only if } m y^{k} \text { is } Q R
$$

Fix I: Choose $g \in \mathrm{QR}$ so that $\langle g\rangle=\mathrm{QR}$ and $m \in \mathrm{QR}$.
Fix II: Choose almost regular hash function $h: G \rightarrow\{0,1\}^{\ell}$ and define $\mathcal{E}_{\mathrm{pk}}(m)=\left(g^{k}, h\left(g^{x k}\right) \oplus m\right)$ for $m \in\{0,1\}^{\ell}$. Then $h\left(g^{x k}\right)$ is almost uniform.

Hybrid encryption

Assume that $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is a IND-CPA secure cryptosystem and prg is a secure pseudorandom generator (secure stream-cipher, e.g. AES in counter mode).

Encrypt. For $m \in\{0,1\}^{\ell}$ choose seed $\in \mathcal{M}$ randomly and compute

$$
\mathcal{E}_{\mathrm{pk}}^{*}(m)=\left(\mathcal{E}_{\mathrm{pk}}(\text { seed }), \operatorname{prg}(\text { seed }) \oplus m\right)
$$

Decrypt. Given $\left(c_{1}, c_{2}\right)$ compute seed $\leftarrow \mathcal{D}_{\text {sk }}\left(c_{1}\right)$ and output $c_{2} \oplus \operatorname{prg}($ seed $)$.

Theorem. The hybrid encryption is IND-CPA secure.

Efficiency considerations

How much time can Malice spend?

Usually, it is assumed that Malice uses a probabilistic polynomial time algorithm to launch the attack. What does it mean?

Example

1994-426 bit RSA challenge broken.
2003-576 bit RSA challenge broken.
2005-640 bit RSA challenge broken.
Instead of a concrete encryption scheme RSA is a family of cryptosystems and Malice can run algorithm polynomial in the length k of RSA modulus.

Negligible advantage means that the advantage decreases faster than k^{-c} for any $c>0$.

A concrete example

For simplicity, imagine that Malice runs algorithms that finish in time k^{5}.

Uniform vs non-uniform security

For each polynomial-time algorithm A_{i} the advantage was negligible:
\Longrightarrow scheme is secure against polynomial uniform adversaries.
If Malice chooses a good algorithm for each k separately \Longrightarrow she breaks the scheme with advantage $\frac{1}{2}$;
\Longrightarrow scheme is insecure against polynomial non-uniform adversaries.
In practise, each adversary has limited resources
\Longrightarrow Given time t, Malice should not achieve Adv (Malice) $\geq \varepsilon_{\text {critical }}$.
If scheme is secure against non-uniform adversaries then for large k :
$\Longrightarrow \operatorname{Adv}($ Malice $) \leq \varepsilon_{\text {critical }}$ for all t time algorithms;
\Longrightarrow the scheme is still efficiently implementable.

Is non-uniform security model adequate in practise*?

Consider the case of browser certificates:

- Several Verisign certificates have been issued in 1996-1998.
- As a potential adversary knows pk, he can design a special crack algorithm for that pk only. He does not care about other values of pk.
- Maybe a special bit pattern of $N=p q$ allows more efficient factorisation?

Why can't we fix pk in the non-uniform model?
Is there a model that describes reality without problems*?
Does security against (non-)uniform adversaries heuristically imply security in real applications*?

