
T-79.5502 Advanced Course
in Cryptology

Lecture 4, Part 1, November 13, 2007
Bit Security (Section 9)
•RSA Bit
•ElGamal Bit
•DL Bit

Reductions
Recall:
Definition 4.10. We say that a language L is polynomially reducible to

another language L0 if there exists a deterministic polynomially-
bounded Turing machine M which will convert each instance I ∈ L
into instance I0 ∈ L0, such that I ∈ L if and only if I0 ∈ L0 .

Assume L0 is a problem and L is a problem, which is known to be hard.
A polynomial reduction of L to L0 proves that L0 is at least as hard
as L. This gives us a way of proving security.

The goal of this lecture is to show that all-or-nothing security is
equivalent to bit-security assuming that encrypted plaintexts are
random.

Two security notions are called equivalent if the problem of breaking
one is polynomially reducible to the breaking of the other, and vice
versa.

RSA Bit Security
For an arbitrary RSA system, consider two problems:
(I) Given the RSA encryption of a message, retrieve the

message.
(II) Given the RSA encryption of a message, retrieve the

least significant bit of the message.

Theorem 9.1. Problems (I) and (II) are polynomially
reducible to each other. That is, all-or-nothing
security and bit security for RSA are equivalent
security notions.

Halving the interval

Lemma 9.1. Let N be an odd integer and x ∈ (0,N). Then 2x
(mod N) is even if and only if x ∈ (0,N/2).

Proof.
Assume x ∈ (0,N/2). Then 2x ∈ (0,N) is even, and

2x = 2x (mod N).

Assume x ∈ (N/2, N). Then 2x ∈ (N,2N) is even, and
2x (mod N) = 2x –N is odd.

Proof of Thm 9.1(1)
Clearly Bit Security implies All-or-nothing Security. It remains to prove

the converse.
Assume we have an RSA ciphertext, and the problem is to decrypt it.

We make use of an algorithm, Parity Oracle PON , which solves
problem (II) for RSA with modulus N and for any given ciphertext.
Then we can construct a polynomial time algorithm, which selects
ciphertexts, makes calls to PON , and solves problem (I), that is, tells
the parity of the decryption of the ciphertext. Such an algorithm can
be constructed as an iterative algorithm, which iterates a notion
called current interval denoted by CI, such that, at each iteration the
length of CI is halved, and the plaintext message remains in CI. With
the help of the Lemma 9.1, Parity Oracle PON is used to select
which of the two halves of the current CI is taken to the next iteration
round.

Proof of Thm 9.1 (2)

It is given c = me mod N, and we know that m ∈ (0,N).
Iteration 1: Set CI = (0,N). Send ciphertext 2ec = (2m)e mod N to PON. We

get the parity of 2m mod N. Then using Lemma 9.1, we know if m
∈(0,N/2) or m ∈ (N/2, N). Set CI to be the interval where m lies.

Iteration 2: The case CI = (0,N/2) is similar to the case CI =(N/2, N). Let us
consider the latter. Send ciphertext 4ec = (4m)e mod N to PON. Then we
get the parity of x = 4m mod N, and we can tell if

(1) 2m mod N ∈(0,N/2), that is, m ∈(0,N/4) or m ∈(N/2,N/4+N/2) ; or
(2) 2m mod N ∈(N/2,N), that is, m ∈(N/4, N/2) or m ∈(N/4+N/2,N).
Recall that m ∈(N/2, N). It follows that, in both (1) and (2), only the latter

interval is possible. Hence, from the parity information given by the
oracle, we get if m ∈(N/2,N/4+N/2) or m ∈(N/4+N/2,N), thus halving the
CI again.

Proof of Thm 9.1 (3)
We get the following general rule to update CI :
If PON replies 0, then the new CI is the lower half of the

current CI.
If PON replies 1, then the new CI is the upper half of the

current CI.
Clearly after ⎣log 2 N⎦+1 steps the length of CI is less than 1.

The last CI containing an integer gives this integer as m.

Conclusion: The owner of the RSA private key should not act
as ”halving” or ”parity” oracle, since such partial
information can be used to decrypt any given ciphertext.

The Rabin Bit
A similar PON works. For example, if N is such that (2/N)

=1 (e.g., N = pq, p = q (mod 8)), if it outputs the parity of
the smaller square root of those with Jacobi symbol = 1.

Application of Rabin bits:
Blum-Blum-Shub Pseudo-random Bit Generator
x0 seed, outputs the least significant bit of the following

integers:
x1 = x0

2 (mod N), …, xi = xi-1
2 (mod N), …

The ElGamal Bit

Given a ciphertext (c1,c2) of an unknown message m,

a binary search can be used, exactly the same way as

for RSA, by quering ciphertexts of the form

(c1,2ic2)(mod p), i = 1,2,…, ⎣log 2 p⎦ + 1

This are the encryptions of messages

2im (mod p), i = 1,2,…, ⎣log 2 p⎦ + 1.

The DL Bit
Assume that the order q of the generator g ∈ G is known and

odd (as q typically is a prime). Then we can compute the
square root of h ∈ G by raising it to the power (q+1)/2.
Given a parity oracle PO, which for a given h ∈ G, replies
with the parity of x such that h = gx, we can reverse the
square-and-multiply algorithm. Denote

x = x0 + x12 + x222 +…+ xk-12k-1, where k = ⎡log2q⎤ .
Given h the PO replies with x0. At the next round element

h1 = (h g-x0) (q+1)/2 = gy, where y = x1 + x22 +…+ xk-12k-2

is given to PO and it replies with x1 .
In this manner, by quering the oracle PO k times all bits of x

can be found.

	T-79.5502 Advanced Course in Cryptology
	Reductions
	RSA Bit Security
	Halving the interval
	Proof of Thm 9.1(1)
	Proof of Thm 9.1 (2)
	Proof of Thm 9.1 (3)
	The Rabin Bit
	The ElGamal Bit
	The DL Bit

