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Stream ciphers
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Stream ciphers

◮ Stream ciphers are symmetric encryption primitives, which are
used to ensure confidentiality of messages in digital
communication.

◮ Stream ciphers often have several advantages over block
ciphers:

◮ more efficient
◮ smaller complexity in hardware
◮ very little error propagation

◮ The security of stream ciphers has not been on the same level
with the most secure block ciphers.
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Synchronous stream ciphers

◮ A synchronous stream cipher generates a sequence of
pseudo-random bits, called the keystream, which is combined
with the plaintext to produce the ciphertext.

◮ A synchronous stream cipher can be described as a finite state
machine that has an internal state and an update function.

◮ In addition, synchronous stream ciphers have a keystream

function that is used to produce the keystream, and an output

function that is used to combine the keystream with the
plaintext.
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Synchronous stream ciphers

◮ Formal definition of encryption with synchronous stream
ciphers:

Internal state: σt = (σ
(0)
t , . . . , σ

(l−1)
t )

State update function G : σt+1 = G (σt , K )
Keystream function F : zt = F (σt , K )
Output function H: ct = H(pt , zt)

◮ Additive synchronous stream ciphers use the bitwise
exclusive-or to combine the plaintext and the keystream:

ct = pt ⊕ zt , t ≥ 0.
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Shift registers

◮ Shift registers are essential building blocks for stream ciphers.

◮ A shift register consists of a state and and a recurrence
relation which defines how the state is updated at each time
step t ≥ 0.

◮ The state consists of r memory cells, each of which holds one
element from the finite field Fq, where q = pk for prime p and
an integer k .

◮ The state is a vector St = (st , . . . , st+r−1), where each
st+i ∈ Fq, i = 0, . . . , r − 1.
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Shift registers

◮ A shift register produces a sequence (st)t≥0, which satisfies
the recurrence relation.

◮ A linear feedback shift register (LFSR) has a linear recurrence
relation

st+r = a0st + a1st+1 + · · · + ar−1st+r−1, t ≥ 0,

where a0, . . . , ar−1 ∈ Fq are the feedback coefficients.

◮ A nonlinear feedback shift register (NLFSR) uses a nonlinear
recurrence relation instead of a linear one.
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Nonlinear filter generators

◮ A nonlinear filter generator consists of a shift register and a
nonlinear filter (NLF) function.

◮ The state σt of the nonlinear filter generator is the state St of
the shift register.

◮ The state update function G of the generator is the state
update function of the shift register.

◮ The keystream function F is the NLF.
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Linear distinguishing attacks on stream ciphers
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Statistical distinguishing attacks

◮ The security of a stream cipher is largely dependent on how
random the keystream (zt)t≥0 can be made to appear.

◮ Statistical distinguishing attacks aim at detecting statistical
bias in the keystream using a distinguisher.

◮ A statistical distinguisher is a statistical hypothesis test which
decides whether a sample sequence (xt)t≥0 is from the cipher
or not.

◮ A distinguishing attack with a very high complexity indicates
a weakness in the primitive.
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Linear distinguishing attacks on stream ciphers

◮ Linear distinguishing attacks are distinguishing attacks, which
make use of linear cryptanalytic techniques.

◮ A linear distinguisher operates in two phases: the
transformation phase and the statistical inference phase.

◮ It is assumed that the input sequence (xt)t≥0 for the
distinguisher is a sequence over the binary vector space F

n
2.
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The transformation phase

◮ In the transformation phase, a F2-linear transformation is
applied to the input sequence (xt)t≥0 in order to obtain a new
sequence (x̂t)t≥0:

x̂t =
⊕

j∈J

vj · xt+j , t ≥ 0,

where vj , xt+j ∈ F
n
2 and x̂t ∈ F2, for all j ∈ J, t ≥ 0.

◮ The set J is the index set that defines which input sequence
vectors are included in the transformation.
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The statistical inference phase

◮ In the statistical inference phase, the distribution of the
sequence (x̂t)t≥0 is examined in order to decide whether the
input sequence (xt)t≥0 is from the stream cipher or not.

◮ The decision is made based on a test statistic, which is usually
a function of the ratio of zeros and ones in (x̂t)t≥0.

◮ For a random input sequence, this ratio should be close to 1
2 .

◮ The goal is usually to find such a linear transformation that
the ratio of zeros and ones in (x̂t)t≥0 differs from 1

2 as much
as possible if the input sequence has been generated by the
stream cipher.
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Required sample size for the distinguisher

◮ To make the decision with high confidence level, the sample
size has to be large enough.

◮ The required sample size depends on the chosen test statistic.

◮ The required sample size with the log-likelihood ratio statistic
can be shown to be O(ǫ−2), where Pr[x̂t = 0] = 1

2 + ǫ, for all
t ≥ 0.
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Problems in linear distinguishing attacks

◮ How to determine the bias ǫ of (x̂t)t≥0 if the input sequence
(xt)t≥0 is from the cipher?

◮ How to choose the transformation

x̂t =
⊕

j∈J

vj · xt+j , t ≥ 0,

such that the bias ǫ of (x̂t)t≥0 is large whenever the input
sequence is from the cipher.
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Constructing a linear distinguisher for a filter

generator
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Piling-Up Lemma

◮ Suppose that X0, . . . ,XN−1 are independent binary random
variables such that Pr[Xi = 0] = 1

2 + ǫi , i = 0, . . . ,N − 1.

◮ The Piling-Up Lemma states that

Pr[X0 ⊕ · · · ⊕ XN−1 = 0] =
1

2
+ 2N−1

N−1
∏

i=0

ǫi .
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Linear approximations

◮ A linear approximation of f : (Fn
2)

m → F
n
2 is a relation of the

form

v · f (x (0), . . . , x (m−1)) =
m−1
⊕

i=0

u(i) · x (i),

where the u(0), . . . , u(m−1) ∈ F
n
2 are called the linear input

masks and v ∈ F
n
2 is called the linear output mask.

◮ We use ua ∈ F
n
2 to denote the linear mask which satisfies the

equality
ua · x = u · ax , for all x ∈ F

n
2,

where the product ax is taken in F2n .
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Linear approximations

◮ The efficiency of a linear approximation of f is measured by
its correlation

cf (v , u) = 2 Pr

[

v · f (x (0), . . . , x (m−1)) =
m−1
⊕

i=0

u(i) · x (i)

]

− 1,

where the probability is taken over uniform
x (0), . . . , x (m−1) ∈ F

n
2.

◮ The bias of a linear approximation is defined to be
ǫf (v , u) = cf (v , u)/2.
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Linear chains

◮ Let f = fN−1 ◦ · · · ◦ f0 be an iterated mapping such that
fi : F

ni

2 → F
ni+1

2 , i = 0, . . . ,N − 1.

◮ Denote by cfi (ui+1, ui ) the correlation of a linear
approximation of fi with the output mask ui+1 ∈ F

ni+1

2 and
the input mask ui ∈ F

ni

2 .

◮ A linear chain is a chain of approximations over the invidual
components of f .

◮ The correlation of a linear chain is defined to be

cf =
N−1
∏

i=0

cfi (ui+1, ui ).
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Linear chains

◮ It can be shown that the the correlation of a linear
approximation of f is

cf (v , u) =
∑

u1,...,uN−1

N−1
∏

i=0

cfi (ui+1, ui ),

where v = uN and u = u0.

◮ If the sum is dominated by a single linear chain with the
masks u0, . . . , uN , one can estimate that

cf (uN , u0) ≈

N−1
∏

i=0

cfi (ui+1, ui ).
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Linear distinguishers for filter generators

◮ A linear distinguisher for a filter generator is constructed as
follows:

1. Several linear approximations of the nonlinear filter F are
formed. These approximations involve keystream variables
(zt)t≥0 and state variables St .

2. Using a time-invariant relation, the state variables St can be
canceled out so that we get an approximation which involves
keystream variables only:

⊕

j∈J

vj · zt+j = 0, t ≥ 0,
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Choosing the linear transformation

◮ The linear transformation in the distinguisher is chosen from
an approximation of the keystream (zt)t≥0 variables.

⊕

j∈J

vj · zt+j = 0, t ≥ 0,

where vj ∈ F
n
2 is the linear mask used in the approximation of

the keystream word zt+j ∈ F
n
2.

◮ The linear approximation of the nonlinear filter F is usually
formed by forming a linear chain of approximations over the
components of F .
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Linear distinguishers for an LFSR-based filter

generator
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LFSR-based filter generators

◮ We suppose that the output keystream (zt)t≥0 does not
depend on the key K , i.e., zt = F (St) and st+r = G (St), for
all t ≥ 0.

◮ We also suppose that the elements in the state St of the
LFSR are from F2n , and that they are statistically indpendent
for all t ≥ 0.

◮ The recurrence relation of the LFSR can be written as

a0st ⊕ a1st+1 ⊕ · · · ⊕ ar−1st+r−1 ⊕ ar st+r = 0, t ≥ 0,

where a0, . . . , ar−1 ∈ F2n , ar = 1, and the product ai st+i is
taken in F2n , for i = 0, . . . , r .
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LFSR-based filter generators

◮ Let 0 ≤ j ≤ r and denote by

vj · zt+j =
r−1
⊕

i=0

u(i)aj · st+j+i (1)

a linear approximation of zt+j = F (St+j) with the output
mask vj ∈ F

n
2 and the input masks u(0)aj , . . . , u

(r−1)aj ∈ F
n
2.

◮ Summing up the approximations (1) for j = 0, . . . , r gives

r
⊕

j=0

vt · zt+j =
r

⊕

j=0

r−1
⊕

i=0

u(i)aj · st+j+i .
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LFSR-based filter generators

◮ Since u(i)aj · x = u(i) · ajx , for all x ∈ F2n , it follows that

r
⊕

j=0

vj · zt+j =
r−1
⊕

i=0

u(i) ·

[

r
⊕

j=0

ajst+j+i

]

= 0.

◮ The last equivalence holds, since
⊕r

j=0 ajst+j+i = 0 is the
recurrence relation

a0st ⊕ a1st+1 ⊕ · · · ⊕ ar−1st+r−1 ⊕ ar st+r = 0, t ≥ 0,

at time t := t + i .
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LFSR-based filter generators

◮ Denote the correlation of the approximation of the NLF F by
cF (vj , uj), where uj = (u(0)aj , . . . , u

(r−1)aj).

◮ The final approximation is formed by taking the xor of the
binary random variables vj · zt+j , j = 0, . . . , r .

◮ The correlation c of the final approximation can be estimated
with the Piling-Up Lemma as

c ≈

r
∏

j=0

cF (vj , uj),

which is the same value for all t ≥ 0.
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LFSR-based filter generators

◮ To find a good distinguisher, we need to find good
approximations (vj , uj) for the NLF.

◮ Good approximations are often searched by forming a linear
chain with high bias over the NLF.

◮ The reason for this is that it is very difficult to examine the
NLF as a single function.

◮ The correlation of the approximation is estimated to be the
correlation of the linear chain.
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Discussion

◮ To construct a linear distinguisher for a NLFSR-based filter
generator, one needs to form a linear approximation for the
nonlinear recurrence relation of the NLFSR also.

◮ If the keystream (zt)t≥0 is dependent on the secret key K

such that zt = F (St , K ) and St+1 = G (St , K ), the correlation
of the linear approximation

⊕

j∈J

vj · zt+j = 0, t ≥ 0,

depends also on K .

◮ This makes it possible to gain information from K .
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Discussion

◮ It is possible to improve a distinguishing attack by using a
multidimensional transformation in the distinguisher:

X̂t =







x̂0,t

...
x̂s−1,t






=







⊕r
j=0 v0,j · xt+j

...
⊕r

j=0 vs−1,j · xt+j






.

◮ In this case, the distribution of the sequence (X̂t)t≥0 is
compared with the uniform distribution in order to decide
whether the input sequence (xt)t≥0 is from the cipher or not.
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