On linear cryptanalysis of stream ciphers

Risto Hakala

December 13, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

- Stream ciphers
- Linear distinguishing attacks on stream ciphers
- Constructing a linear distinguisher for a filter generator
- ► Linear distinguishers for an LFSR-based filter generator

Stream ciphers

Risto Hakala On linear cryptanalysis of stream ciphers

2

Stream ciphers

- Stream ciphers are symmetric encryption primitives, which are used to ensure confidentiality of messages in digital communication.
- Stream ciphers often have several advantages over block ciphers:
 - more efficient
 - smaller complexity in hardware
 - very little error propagation
- The security of stream ciphers has not been on the same level with the most secure block ciphers.

Synchronous stream ciphers

- A synchronous stream cipher generates a sequence of pseudo-random bits, called the *keystream*, which is combined with the plaintext to produce the ciphertext.
- ► A synchronous stream cipher can be described as a finite state machine that has an *internal state* and an *update function*.
- In addition, synchronous stream ciphers have a keystream function that is used to produce the keystream, and an output function that is used to combine the keystream with the plaintext.

Synchronous stream ciphers

Formal definition of encryption with synchronous stream ciphers:

Internal state:
$$\sigma_t = (\sigma_t^{(0)}, \dots, \sigma_t^{(l-1)})$$

State update function *G*: Keystream function *F*: Output function *H*:

$$\sigma_{t+1} = G(\sigma_t, K)$$

$$z_t = F(\sigma_t, K)$$

$$c_t = H(p_t, z_t)$$

Additive synchronous stream ciphers use the bitwise exclusive-or to combine the plaintext and the keystream:

$$c_t = p_t \oplus z_t, \quad t \ge 0.$$

Shift registers

- Shift registers are essential building blocks for stream ciphers.
- A shift register consists of a state and and a recurrence relation which defines how the state is updated at each time step t ≥ 0.
- The state consists of r memory cells, each of which holds one element from the finite field F_q, where q = p^k for prime p and an integer k.
- ▶ The state is a vector $S_t = (s_t, ..., s_{t+r-1})$, where each $s_{t+i} \in \mathbf{F}_q$, i = 0, ..., r-1.

Shift registers

- ► A shift register produces a sequence (s_t)_{t≥0}, which satisfies the recurrence relation.
- A linear feedback shift register (LFSR) has a linear recurrence relation

$$s_{t+r} = a_0 s_t + a_1 s_{t+1} + \dots + a_{r-1} s_{t+r-1}, \quad t \ge 0,$$

where $a_0, \ldots, a_{r-1} \in \mathbf{F}_q$ are the feedback coefficients.

► A nonlinear feedback shift register (NLFSR) uses a nonlinear recurrence relation instead of a linear one.

Nonlinear filter generators

- A nonlinear filter generator consists of a shift register and a nonlinear filter (NLF) function.
- The state σ_t of the nonlinear filter generator is the state S_t of the shift register.
- The state update function G of the generator is the state update function of the shift register.
- ▶ The keystream function *F* is the NLF.

Linear distinguishing attacks on stream ciphers

Statistical distinguishing attacks

- ► The security of a stream cipher is largely dependent on how random the keystream (z_t)_{t≥0} can be made to appear.
- Statistical distinguishing attacks aim at detecting statistical bias in the keystream using a distinguisher.
- ► A statistical distinguisher is a statistical hypothesis test which decides whether a sample sequence (x_t)_{t≥0} is from the cipher or not.
- A distinguishing attack with a very high complexity indicates a weakness in the primitive.

Linear distinguishing attacks on stream ciphers

- Linear distinguishing attacks are distinguishing attacks, which make use of linear cryptanalytic techniques.
- A linear distinguisher operates in two phases: the transformation phase and the statistical inference phase.
- It is assumed that the input sequence (x_t)_{t≥0} for the distinguisher is a sequence over the binary vector space Fⁿ₂.

The transformation phase

In the transformation phase, a F₂-linear transformation is applied to the input sequence (x_t)_{t≥0} in order to obtain a new sequence (x̂_t)_{t≥0}:

$$\hat{x}_t = \bigoplus_{j \in J} v_j \cdot x_{t+j}, \quad t \ge 0,$$

where $v_j, x_{t+j} \in \mathbf{F}_2^n$ and $\hat{x}_t \in \mathbf{F}_2$, for all $j \in J, t \ge 0$.

The set J is the index set that defines which input sequence vectors are included in the transformation.

The statistical inference phase

- In the statistical inference phase, the distribution of the sequence (x̂_t)_{t≥0} is examined in order to decide whether the input sequence (x_t)_{t≥0} is from the stream cipher or not.
- ► The decision is made based on a test statistic, which is usually a function of the ratio of zeros and ones in (x̂_t)_{t≥0}.
- For a random input sequence, this ratio should be close to $\frac{1}{2}$.
- ► The goal is usually to find such a linear transformation that the ratio of zeros and ones in (x̂_t)_{t≥0} differs from ¹/₂ as much as possible if the input sequence has been generated by the stream cipher.

Required sample size for the distinguisher

- To make the decision with high confidence level, the sample size has to be large enough.
- ▶ The required sample size depends on the chosen test statistic.
- ▶ The required sample size with the log-likelihood ratio statistic can be shown to be $O(\epsilon^{-2})$, where $\Pr[\hat{x}_t = 0] = \frac{1}{2} + \epsilon$, for all $t \ge 0$.

Problems in linear distinguishing attacks

- ► How to determine the bias e of (x̂_t)_{t≥0} if the input sequence (x_t)_{t≥0} is from the cipher?
- How to choose the transformation

$$\hat{x}_t = \bigoplus_{j \in J} v_j \cdot x_{t+j}, \quad t \ge 0,$$

such that the bias ϵ of $(\hat{x}_t)_{t\geq 0}$ is large whenever the input sequence is from the cipher.

Constructing a linear distinguisher for a filter generator

3

Piling-Up Lemma

Suppose that X₀,..., X_{N−1} are independent binary random variables such that Pr[X_i = 0] = ¹/₂ + ε_i, i = 0,..., N − 1.

The Piling-Up Lemma states that

$$\Pr[X_0 \oplus \cdots \oplus X_{N-1} = 0] = \frac{1}{2} + 2^{N-1} \prod_{i=0}^{N-1} \epsilon_i.$$

Linear approximations

A linear approximation of f: (Fⁿ₂)^m → Fⁿ₂ is a relation of the form

$$v \cdot f(x^{(0)}, \ldots, x^{(m-1)}) = \bigoplus_{i=0}^{m-1} u^{(i)} \cdot x^{(i)},$$

where the $u^{(0)}, \ldots, u^{(m-1)} \in \mathbf{F}_2^n$ are called the *linear input* masks and $v \in \mathbf{F}_2^n$ is called the *linear output mask*.

We use ua ∈ Fⁿ₂ to denote the linear mask which satisfies the equality

$$ua \cdot x = u \cdot ax$$
, for all $x \in \mathbf{F}_2^n$,

where the product ax is taken in \mathbf{F}_{2^n} .

Linear approximations

The efficiency of a linear approximation of f is measured by its correlation

$$c_f(v,u) = 2 \operatorname{Pr}\left[v \cdot f(x^{(0)}, \dots, x^{(m-1)}) = \bigoplus_{i=0}^{m-1} u^{(i)} \cdot x^{(i)}\right] - 1,$$

where the probability is taken over uniform $x^{(0)}, \ldots, x^{(m-1)} \in \mathbf{F}_2^n$.

• The bias of a linear approximation is defined to be $\epsilon_f(v, u) = c_f(v, u)/2$.

Linear chains

- ▶ Let $f = f_{N-1} \circ \cdots \circ f_0$ be an iterated mapping such that f_i : $\mathbf{F}_2^{n_i} \to \mathbf{F}_2^{n_{i+1}}$, $i = 0, \dots, N-1$.
- ▶ Denote by $c_{f_i}(u_{i+1}, u_i)$ the correlation of a linear approximation of f_i with the output mask $u_{i+1} \in \mathbf{F}_2^{n_{i+1}}$ and the input mask $u_i \in \mathbf{F}_2^{n_i}$.
- ► A linear chain is a chain of approximations over the invidual components of *f*.
- The correlation of a linear chain is defined to be

$$c_f = \prod_{i=0}^{N-1} c_{f_i}(u_{i+1}, u_i).$$

Linear chains

It can be shown that the the correlation of a linear approximation of f is

$$c_f(v, u) = \sum_{u_1, \dots, u_{N-1}} \prod_{i=0}^{N-1} c_{f_i}(u_{i+1}, u_i),$$

where $v = u_N$ and $u = u_0$.

► If the sum is dominated by a single linear chain with the masks u₀,..., u_N, one can estimate that

$$c_f(u_N, u_0) \approx \prod_{i=0}^{N-1} c_{f_i}(u_{i+1}, u_i).$$

Linear distinguishers for filter generators

- A linear distinguisher for a filter generator is constructed as follows:
 - 1. Several linear approximations of the nonlinear filter F are formed. These approximations involve keystream variables $(z_t)_{t\geq 0}$ and state variables S_t .
 - 2. Using a time-invariant relation, the state variables S_t can be canceled out so that we get an approximation which involves keystream variables only:

$$\bigoplus_{j\in J}v_j\cdot z_{t+j}=0,\quad t\geq 0,$$

Choosing the linear transformation

► The linear transformation in the distinguisher is chosen from an approximation of the keystream (z_t)_{t≥0} variables.

$$\bigoplus_{j\in J}v_j\cdot z_{t+j}=0,\quad t\geq 0,$$

where $v_j \in \mathbf{F}_2^n$ is the linear mask used in the approximation of the keystream word $z_{t+j} \in \mathbf{F}_2^n$.

The linear approximation of the nonlinear filter F is usually formed by forming a linear chain of approximations over the components of F.

Linear distinguishers for an LFSR-based filter generator

3

- We suppose that the output keystream (z_t)_{t≥0} does not depend on the key K, i.e., z_t = F(S_t) and s_{t+r} = G(S_t), for all t ≥ 0.
- We also suppose that the elements in the state S_t of the LFSR are from F_{2ⁿ}, and that they are statistically indpendent for all t ≥ 0.
- The recurrence relation of the LFSR can be written as

$$a_0s_t\oplus a_1s_{t+1}\oplus\cdots\oplus a_{r-1}s_{t+r-1}\oplus a_rs_{t+r}=0, \quad t\geq 0,$$

where $a_0, \ldots, a_{r-1} \in \mathbf{F}_{2^n}$, $a_r = 1$, and the product $a_i s_{t+i}$ is taken in \mathbf{F}_{2^n} , for $i = 0, \ldots, r$.

• Let $0 \le j \le r$ and denote by

$$v_j \cdot z_{t+j} = \bigoplus_{i=0}^{r-1} u^{(i)} a_j \cdot s_{t+j+i}$$
(1)

a linear approximation of z_{t+j} = F(S_{t+j}) with the output mask v_j ∈ F₂ⁿ and the input masks u⁽⁰⁾a_j,..., u^(r-1)a_j ∈ F₂ⁿ.
Summing up the approximations (1) for j = 0,..., r gives

$$\bigoplus_{j=0}^{r} v_t \cdot z_{t+j} = \bigoplus_{j=0}^{r} \bigoplus_{i=0}^{r-1} u^{(i)} a_j \cdot s_{t+j+i}$$

▶ Since
$$u^{(i)}a_j \cdot x = u^{(i)} \cdot a_j x$$
, for all $x \in \mathbf{F}_{2^n}$, it follows that

$$\bigoplus_{j=0}^{r} v_j \cdot z_{t+j} = \bigoplus_{i=0}^{r-1} u^{(i)} \cdot \left[\bigoplus_{j=0}^{r} a_j s_{t+j+i} \right] = 0.$$

► The last equivalence holds, since ⊕^r_{j=0} a_js_{t+j+i} = 0 is the recurrence relation

$$a_0s_t\oplus a_1s_{t+1}\oplus\cdots\oplus a_{r-1}s_{t+r-1}\oplus a_rs_{t+r}=0,\quad t\geq 0,$$

at time t := t + i.

- ▶ Denote the correlation of the approximation of the NLF *F* by $c_F(v_j, u_j)$, where $u_j = (u^{(0)}a_j, \dots, u^{(r-1)}a_j)$.
- ► The final approximation is formed by taking the xor of the binary random variables v_j · z_{t+j}, j = 0,..., r.
- The correlation c of the final approximation can be estimated with the Piling-Up Lemma as

$$c \approx \prod_{j=0}^r c_F(v_j, u_j),$$

which is the same value for all $t \ge 0$.

- ► To find a good distinguisher, we need to find good approximations (v_j, u_j) for the NLF.
- Good approximations are often searched by forming a linear chain with high bias over the NLF.
- The reason for this is that it is very difficult to examine the NLF as a single function.
- The correlation of the approximation is estimated to be the correlation of the linear chain.

Discussion

- To construct a linear distinguisher for a NLFSR-based filter generator, one needs to form a linear approximation for the nonlinear recurrence relation of the NLFSR also.
- If the keystream (z_t)_{t≥0} is dependent on the secret key K such that z_t = F(S_t, K) and S_{t+1} = G(S_t, K), the correlation of the linear approximation

$$\bigoplus_{j\in J}v_j\cdot z_{t+j}=0,\quad t\geq 0,$$

depends also on K.

• This makes it possible to gain information from *K*.

Discussion

It is possible to improve a distinguishing attack by using a multidimensional transformation in the distinguisher:

$$\hat{X}_{t} = \begin{bmatrix} \hat{x}_{0,t} \\ \vdots \\ \hat{x}_{s-1,t} \end{bmatrix} = \begin{bmatrix} \bigoplus_{j=0}^{r} v_{0,j} \cdot x_{t+j} \\ \vdots \\ \bigoplus_{j=0}^{r} v_{s-1,j} \cdot x_{t+j} \end{bmatrix}$$

In this case, the distribution of the sequence (X̂_t)_{t≥0} is compared with the uniform distribution in order to decide whether the input sequence (x_t)_{t>0} is from the cipher or not.