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Identity-Based Cryptography

PKI doesn’t really scale well. Instead (Shamir 84),
let’s use a user’s Identity (ID) as a public key.

⇒ key channels are no longer needed! (don’t have
to “lookup” a user’s public key)

Unconditional Trust of the Trusted Third Party (TTP).
(Well, most of the time...)

⇒ TTP can read everything and forge everything.
Acceptable in some cases?
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Shamir’s ID-Based Signatures

Algorithm 13.1:

Setup. (TTP) N = pq, e∈ Z∗N, d = e−1 modφ(N),

H : {0,1}∗ 7→ Zφ(N). {N,e, H} are public, system-wide

parameters; d is TTP’s private master key.

User Keygen. g = IDd (mod N) (g is private)

Sign. t = re (mod N), s= g· rH(t‖M) (mod N) where r ∈R Z∗N
and M is the message; the signature is {s, t}.
Verify. TRUE iff se≡ ID · tH(t‖M) (mod N)

se = (grH(t‖M))e = IDdere·H(t‖M) = ID · tH(t‖M)
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Self-Certified Keys

Instead of verifying public keys from a TTP signature, extract the

public key using the user’s identity (ID) (Girault 91).

Reduced storage: a TTP signature on a key is no longer needed.

Computationally efficient : keys can be extracted using only 1

exponentation (scalar mult), while verifying public keys from a

signature takes 2.

The authenticity of SC keys cannot be explicitely verified. (The

authenticity is implicit, so they are sometimes called implicit

certificates .)

SC keys can only be used with the same cryptographic settings in

which they were generated.
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Implicit Certificates

TTP has private key v and public key V. Function f maps a group element R and

message m to Zq as f (R,m) 7→ P(R)+ H(m) modq where P is a projection and

H a hash function. (It is public, anyone can calculate it.)

TTP←− Alice: Ga

TTP:















R= GkGa

r = f (R, ID)

s= −k−vr (mod q)

Alice←− TTP: {R,s}

Alice’s private key is s= a−s (mod q). The implicit certificate is R and Alice’s

public key is extracted by first computing r = f (R, ID) then

V rR= Gvr+k+a = Gvr+k+s+s = Gvr+k−k−vr+s = Gs
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Properties of Bilinear Maps

Exponentation in groups. Denoted gk = g·g· . . . ·g in (G, ·) or

kP= P+P+ · · ·+P in (G,+). (Both k times.)

Consider the two groups (G1,+) and (G2, ·) of prime order q. A bilinear

map

e : G1×G1→G2

has three useful properties:

Bilinearity. ∀P,Q∈G1,∀a,b∈ Z∗q, e(aP,bQ) = e(bP,aQ) = e(P,Q)ab

Non-Degeneracy. ∀P∈G1\O,e(P,P) 6= 1. (Hence e(P,P) generates

G2.)

Computability. e is efficiently computable.

Typically, G1 is an elliptic curve and G2 a finite field. (The notation reflects

this.)
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Bilinear Maps & Discrete Logs

Theorem 1. The Discrete Log Problem in G1 is no
harder than the Discrete Log Problem in G2.

Proof. GivenQ = aP∈G1, we want to know logPQ in
G1. From bilinearity, we have
e(P,Q) = e(P,aP) = e(P,P)a so we calculate
P′ = e(P,P) ∈G2 andQ′ = e(P,Q) ∈G2. We then
calculatea = logP′Q

′ in G2, anda = logPQ in G1 also
holds.
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Decisional DH Problem (DDH)

Definition 13.1.
Decisional Diffie-Hellman (DDH) Problem: in (G,+):

INPUT: Four elements P,aP,bP,cP∈G. P generates
G.

OUTPUT: YES iff c≡ ab (mod #G).

DDH can’t be harder than CDH; given a CDH solver, one
can solve DDH.

Can DDH be easy if CDH is hard?
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Bilinear Maps & Decisional DH

Theorem 2. The Decisional Diffie-Hellman Problem is
easy in G1.

Proof. GivenP,aP,bP,cP∈G1 with a,b,c∈R Z∗q, it
follows that

e(aP,bP) = e(P,P)ab and

e(P,cP) = e(P,P)c

As e is non-degenerate,c≡ ab (mod q) iff
e(aP,bP) = e(P,cP).
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1-Round 3-Party DH Key Agreement

Joux 00, Sec. 13.3.6 Mao. Not ID-Based. One-round tripartite DH key

agreement; classical DH takes more rounds. Wonderfully simple!

Assume the previous notation with e : G1×G1→G2 a bilinear map and P a

generator of G1 with order q.

Three parties A,B,C have private keys a,b,c∈ Z∗q and want to agree on a

key. They each broadcast their public keys (elements of G1):

[A : aP−→ B,C][B : bP−→ A,C][C : cP−→ A,B]

They then calculate [A : e(bP,cP)a][B : e(aP,cP)b][C : e(aP,bP)c]

Due to bilinearity, they share the secret key

e(bP,cP)a = e(aP,cP)b = e(aP,bP)c = e(P,P)abc∈G2
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Bilinear DH Assumption

This gives a new hardness assumption, The Bilinear
Diffie-Hellman (BDH) Assumption :

Given {P,aP,bP,cP}, the computation of e(P,P)abc is
hard.
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Pairings & ID-Based Encryption

Boneh & Franklin 01:

Setup. (TTP) Again, e : G1×G1→G2 a bilinear map and P a generator of G1 with order q.

TTP generates private key v∈R Z
∗
q and public key V = vP∈G1. Public functions

H1 : {0,1}∗→G1 and H2 : G2→ {0,1}∗.
Keygen. W = vH1(ID) ∈G1. ID is the user’s identify and W the private key. The public key is

actually ID!

Encrypt. Given TTP’s public key V, to encrypt the message m to identity ID:

Enc(V, ID,m) = {c1,c2}
c1 = kP where k∈R Z

∗
q

c2 = m⊕ H2(e(H1(ID),V)k)

Decrypt. To decrypt {c1,c2} using private key W:

Dec(c1,c2,W) = c2⊕ H2(e(W,c1)) = c2⊕ H2(e(vH1(ID),kP))

= c2⊕ H2(e(H1(ID),P)vk) = c2⊕ H2(e(H1(ID),vP)k)

= c2⊕m⊕c2 = m
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Scheme Comments

TTP can read everything.

Encryption can take place before ID has a private
key.

How are H1 and H2 realized?
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Elliptic Curves

Elliptic curve E(K) : y2 = x3 +ax+b when Char(K) 6= 2,3.

Form a group from the points (solutions) on the curve over K. (plus an identity element O).

Group law:

Identity. ∀P∈ E, P+O = O +P = P. (O is the point-at-infinity.)

Negatives/Inverses. ∀P = (x,y) ∈ E, −P = (x,−y) and P+−P = O.

Point Addition/Doubling. With P = (x1,y1) Q = (x2,y2) R= (x3,y3), P+Q = R is:

x3 = λ2−x1−x2

y3 = λ(x1−x3)−y1 , where λ is the slope:

λ =











y2−y1

x2−x1
if P 6= Q (point addition)

3x1
2 +a

2y1
if P = Q (point doubling)

Scalar Multiplication: kP=
log2 k

∑
i=0

ki2
iP

(1986) N. Koblitz and V. Miller independently suggested elliptic curves for cryptographic use.
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The Group Law Geometrically

(src: Hankerson, Menezes, Vanstone, Guide to Elliptic Curve Cryptography, Springer 04)
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Elliptic Curves over a Finite Field

What’s the order of the curve? Well, logically #E ≈ p. . .

Hasse Bound: p+1−2
√

p≤ #E(Fp)≤ p+1+2
√

p, or...

#E = p+1− t where t is “trace of the Frobenius." (small)

if p divides t the curve is called supersingular .

Example: E(F23) : y2 = x3 +1 is cyclic; P = (21,4) generates the

entire group and ord(P) = #E = 24. t = 0 so E is supersingular.

1P (21,4) 7P (14,10) 13P (19,11) 19P (13,6)

2P (12,21) 8P (0,1) 14P (1,18) 20P (2,20)

3P (16,7) 9P (10,14) 15P (10,9) 21P (16,16)

4P (2,3) 10P (1,5) 16P (0,22) 22P (12,2)

5P (13,17) 11P (19,12) 17P (14,13) 23P (21,19)

6P (15,15) 12P (22,0) 18P (15,8) 24P (0,0) = O
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Elliptic Curve over a Finite Field (Fig.)

E(F23) : y2 = x3 +1. #E = p+1− t = 23+1−0 = 24 (23 points +O)
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Elliptic Curves & Discrete Logs

Pollard’s Rho Algorithm: G of order q, solves the
general DLP in ≈√q steps (exponential).

Index Calculus (IC) for Z∗p: solves DLP in

≈ e(2+o(1))
√

logplog logp (subexponential).

An IC analogue for solving ECDLP would try to “lift"
points to the rationals Q; the size of lifted points is
not practical.

Hence, the best algorithm for solving ECDLP is
exponential—this is why we like ECC!
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The Tate Pairing

For curves, the smallest positive integer k such that pk ≡ 1 (mod q) is the

embedding degree . (Intuitively k is the multiplicative order of p modulo q.)

For pairings, we want k small(ish). For random curves, k is probably big; for

supersingular curves, k≤ 6. (See example curve E(F23).)

The Tate Pairing

e : E(Fp)[q]×E(Fpk)[q]→ F∗pk

satisfies the following properties:

Non-degeneracy. ∀P∈ E(Fp)[q]\O∃Q∈ E(Fpk)[q]|e(P,Q) 6= 1.

Bilinearity. ∀P∈ E(Fp)[q],Q∈ E(Fpk)[q],a∈ Z∗q,

e(aP,Q) = e(P,aQ) = e(P,Q)a.

for k small, this means :

DLP methods can be used to solve ECDLP. (See Thm. 1.)

ID-Based Crypto with pairings is efficient.
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Visualizing Pairings

(src: M. Scott, The Tate Pairing)

Identity-Based Cryptography – 21/24



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Miller’s Algorithm

Written by V. Miller in 1986, never formally published.

Foundation of all modern pairing computation.

Like scalar multiplication + some extras. Not particularly fast.

Input: group order q, points P∈ E(Fp), Q∈ E(Fpk)

Output: Tate pairing evaluation, e(P,Q) ∈ F∗pk

f ← 1, T← P /* f ∈ Fpk, T ∈ E(Fp) */

for i← log2q−1 to 0 do
f ← f 2 · lT,T(Q)/v2T(Q), T← 2T

if qi = 1 then f ← f · lT,P(Q)/vT+P(Q), T← T +P

end

return f
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Visualizing Miller’s Algorithm

(src: M. Scott, Efficient Implementation of Cryptographic pairings)
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Conclusion

ID-Based Crypto is a great alternative for some
environments. (Particularly, resource-constrained
devices; wireless sensor networks?)

ID-Based Crypto with pairings is compact and fun!

Lack of supporting standards.
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