Identity-Based Cryptography T-79.5502 Advanced Course in Cryptology

Billy Brumley

billy.brumley at hut.fi

Laboratory for Theoretical Computer Science Helsinki University of Technology

Outline

- Classical ID-Based Crypto; Self-Certified Keys
- Bilinear Maps, ID-Based schemes
- Elliptic Curves
- Tate Pairing, implementation

Identity-Based Cryptography

- PKI doesn't really scale well. Instead (Shamir 84), let's use a user's *Identity (ID)* as a public key.
- key channels are no longer needed! (don't have to "lookup" a user's public key)
- Unconditional Trust of the Trusted Third Party (TTP).
 (Well, most of the time...)
- TTP can read everything and forge everything.
 Acceptable in some cases?

Shamir's ID-Based Signatures

Algorithm 13.1:

- Setup. (TTP) N = pq, $e \in \mathbb{Z}_N^*$, $d = e^{-1} \mod \phi(N)$, H: $\{0,1\}^* \mapsto \mathbb{Z}_{\phi(N)}$. $\{N, e, H\}$ are public, system-wide parameters; d is TTP's private *master key*.
- **User Keygen.** $g = ID^d \pmod{N}$ (g is private)
- Sign. $t = r^e \pmod{N}$, $s = g \cdot r^{\mathsf{H}(t||M)} \pmod{N}$ where $r \in_R \mathbb{Z}_N^*$ and M is the message; the signature is $\{s, t\}$.
- **Verify.** TRUE iff $s^e \equiv ID \cdot t^{H(t||M)} \pmod{N}$

$$s^e = (gr^{\mathsf{H}(t \parallel M)})^e = ID^{de}r^{e \cdot \mathsf{H}(t \parallel M)} = ID \cdot t^{\mathsf{H}(t \parallel M)}$$

Self-Certified Keys

- Instead of verifying public keys from a TTP signature, *extract* the public key using the user's *identity* (*ID*) (Girault 91).
- Reduced storage: a TTP signature on a key is no longer needed.
- Computationally efficient: keys can be extracted using only 1 exponentation (scalar mult), while verifying public keys from a signature takes 2.
- The authenticity of SC keys cannot be explicitly verified. (The authenticity is *implicit*, so they are sometimes called **implicit** certificates.)
- SC keys can only be used with the same cryptographic settings in which they were generated.

Implicit Certificates

TTP has private key v and public key V. Function f maps a group element R and message m to \mathbb{Z}_q as $f(R,m) \mapsto P(R) + H(m) \mod q$ where P is a projection and H a hash function. (It is public, anyone can calculate it.)

 $\mathsf{TTP} \longleftarrow \mathsf{Alice:} \ G^a$

$$\mathsf{TTP:} \begin{cases} R = -G^k G^a \\ r = -f(R, ID) \\ \overline{s} = -k - vr \pmod{q} \end{cases}$$
$$\mathsf{Alice} \longleftarrow \mathsf{TTP:} \{R, \overline{s}\}$$

Alice's private key is $s = a - \overline{s} \pmod{q}$. The implicit certificate is *R* and Alice's public key is extracted by first computing r = f(R, ID) then

$$V^{r}R = G^{\nu r+k+a} = G^{\nu r+k+\overline{s}+s} = G^{\nu r+k-k-\nu r+s} = G^{s}$$

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

Identity-Based Cryptography - 6/24

Properties of Bilinear Maps

- Exponentation in groups. Denoted $g^k = g \cdot g \cdot \ldots \cdot g$ in (G, \cdot) or $kP = P + P + \cdots + P$ in (G, +). (Both *k* times.)
- Consider the two groups $(G_1, +)$ and (G_2, \cdot) of prime order q. A bilinear map

$$e:G_1\times G_1\to G_2$$

has three useful properties:

- Bilinearity. $\forall P, Q \in G_1, \forall a, b \in \mathbb{Z}_q^*, e(aP, bQ) = e(bP, aQ) = e(P, Q)^{ab}$
- Non-Degeneracy. $\forall P \in G_1 \setminus O, e(P, P) \neq 1$. (Hence e(P, P) generates G_2 .)
- **Computability.** *e* is efficiently computable.

Typically, G_1 is an elliptic curve and G_2 a finite field. (The notation reflects this.)

Bilinear Maps & Discrete Logs

Theorem 1. The Discrete Log Problem in G_1 is no harder than the Discrete Log Problem in G_2 .

Proof. Given $Q = aP \in G_1$, we want to know $\log_P Q$ in G_1 . From bilinearity, we have $e(P,Q) = e(P,aP) = e(P,P)^a$ so we calculate $P' = e(P,P) \in G_2$ and $Q' = e(P,Q) \in G_2$. We then calculate $a = \log_{P'} Q'$ in G_2 , and $a = \log_P Q$ in G_1 also holds.

Decisional DH Problem (DDH)

Definition 13.1.

Decisional Diffie-Hellman (DDH) Problem: in (G, +):

- INPUT: Four elements $P, aP, bP, cP \in G$. *P* generates *G*.
- **OUTPUT:** YES iff $c \equiv ab \pmod{\#G}$.

DDH can't be harder than CDH; given a CDH solver, one can solve DDH.

Can DDH be easy if CDH is hard?

Bilinear Maps & Decisional DH

Theorem 2. The Decisional Diffie-Hellman Problem is easy in G_1 .

Proof. Given $P, aP, bP, cP \in G_1$ with $a, b, c \in_R \mathbb{Z}_q^*$, it follows that

$$e(aP, bP) = e(P, P)^{ab}$$
 and
 $e(P, cP) = e(P, P)^{c}$

As *e* is non-degenerate, $c \equiv ab \pmod{q}$ iff e(aP, bP) = e(P, cP).

1-Round 3-Party DH Key Agreement

- Joux 00, Sec. 13.3.6 Mao. Not ID-Based. One-round tripartite DH key agreement; classical DH takes more rounds. Wonderfully simple!
- Assume the previous notation with $e: G_1 \times G_1 \rightarrow G_2$ a bilinear map and P a generator of G_1 with order q.
- Three parties A, B, C have private keys $a, b, c \in \mathbb{Z}_q^*$ and want to agree on a key. They each broadcast their public keys (elements of G_1):

$$[A: aP \longrightarrow B, C][B: bP \longrightarrow A, C][C: cP \longrightarrow A, B]$$

They then calculate $[A : e(bP, cP)^a][B : e(aP, cP)^b][C : e(aP, bP)^c]$

Due to bilinearity, they share the secret key

$$e(bP,cP)^a = e(aP,cP)^b = e(aP,bP)^c = e(P,P)^{abc} \in G_2$$

Bilinear DH Assumption

- This gives a new hardness assumption, The Bilinear Diffie-Hellman (BDH) Assumption:
- Given $\{P, aP, bP, cP\}$, the computation of $e(P, P)^{abc}$ is hard.

Pairings & ID-Based Encryption

Boneh & Franklin 01:

- Setup. (TTP) Again, $e: G_1 \times G_1 \to G_2$ a bilinear map and P a generator of G_1 with order q. TTP generates private key $v \in_R \mathbb{Z}_q^*$ and public key $V = vP \in G_1$. Public functions $H_1: \{0,1\}^* \to G_1$ and $H_2: G_2 \to \{0,1\}^*$.
- **Keygen.** $W = vH_1(ID) \in G_1$. *ID* is the user's identify and *W* the private key. The public key is *actually ID*!
 - **Encrypt.** Given TTP's public key V, to encrypt the message m to identity ID:

$$Enc(V, ID, m) = \{c_1, c_2\}$$

$$c_1 = kP \text{ where } k \in_R \mathbb{Z}_q^*$$

$$c_2 = m \oplus H_2(e(H_1(ID), V)^k)$$

Decrypt. To decrypt $\{c_1, c_2\}$ using private key W:

$$Dec(c_1, c_2, W) = c_2 \oplus H_2(e(W, c_1)) = c_2 \oplus H_2(e(vH_1(ID), kP))$$
$$= c_2 \oplus H_2(e(H_1(ID), P)^{vk}) = c_2 \oplus H_2(e(H_1(ID), vP)^k)$$
$$= c_2 \oplus m \oplus c_2 = m$$
$$Laboratory for Theoretical Computer Science$$

Identity-Based Cryptography - 13/24

Scheme Comments

- TTP can read everything.
- Encryption can take place before *ID* has a private key.
- How are H_1 and H_2 realized?

Elliptic Curves

Elliptic curve E(K): $y^2 = x^3 + ax + b$ when $Char(K) \neq 2, 3$.

Form a group from the points (solutions) on the curve over K. (plus an identity element O).

Group law:

Identity. $\forall P \in E, P + O = O + P = P$. (O is the point-at-infinity.)

Negatives/Inverses. $\forall P = (x, y) \in E, -P = (x, -y) \text{ and } P + -P = O.$

Point Addition/Doubling. With $P = (x_1, y_1) Q = (x_2, y_2) R = (x_3, y_3)$, P + Q = R is:

$$x_{3} = \lambda^{2} - x_{1} - x_{2}$$

$$y_{3} = \lambda(x_{1} - x_{3}) - y_{1} \text{, where } \lambda \text{ is the slope:}$$

$$\lambda = \begin{cases} \frac{y_{2} - y_{1}}{x_{2} - x_{1}} & \text{if } P \neq Q \text{ (point addition)} \\ \frac{3x_{1}^{2} + a}{2y_{1}} & \text{if } P = Q \text{ (point doubling)} \end{cases}$$

(1986) N. Koblitz and V. Miller independently suggested elliptic curves for cryptographic use.

The Group Law Geometrically

(src: Hankerson, Menezes, Vanstone, Guide to Elliptic Curve Cryptography, Springer 04)

Elliptic Curves over a Finite Field

- What's the order of the curve? Well, logically $\#E \approx p \dots$
- Hasse Bound: $p+1-2\sqrt{p} \le \#E(\mathbb{F}_p) \le p+1+2\sqrt{p}$, or...
- \blacksquare #E = p + 1 t where t is "trace of the Frobenius." (small)
- if *p* divides *t* the curve is called **supersingular**.
- Example: $E(\mathbb{F}_{23})$: $y^2 = x^3 + 1$ is cyclic; P = (21, 4) generates the entire group and ord(P) = #E = 24. t = 0 so E is supersingular.

1 <i>P</i>	(21,4)	7 <i>P</i>	(14,10)	13P	(19,11)	19 <i>P</i>	(13,6)
2 <i>P</i>	(12,21)	8 <i>P</i>	(0,1)	14P	(1,18)	20P	(2,20)
3 <i>P</i>	(16,7)	9 <i>P</i>	(10,14)	15P	(10,9)	21 <i>P</i>	(16,16)
4 <i>P</i>	(2,3)	10P	(1,5)	16P	(0,22)	22P	(12,2)
5 <i>P</i>	(13,17)	11 <i>P</i>	(19,12)	17P	(14,13)	23P	(21,19)
6 <i>P</i>	(15,15)	12P	(22,0)	18P	(15,8)	24P	(0,0) = 0

Elliptic Curve over a Finite Field (Fig.)

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Elliptic Curves & Discrete Logs

- Pollard's Rho Algorithm: G of order q, solves the general DLP in $\approx \sqrt{q}$ steps (exponential).
- Index Calculus (IC) for \mathbb{Z}_p^* : solves DLP in $\approx e^{(2+o(1))\sqrt{\log p \log \log p}}$ (subexponential).
- An IC analogue for solving ECDLP would try to "lift" points to the rationals Q; the size of lifted points is not practical.
- Hence, the best algorithm for solving ECDLP is exponential—this is why we like ECC!

The Tate Pairing

- For curves, the smallest positive integer k such that $p^k \equiv 1 \pmod{q}$ is the **embedding degree**. (Intuitively k is the multiplicative order of p modulo q.)
- For pairings, we want k small(ish). For random curves, k is probably big; for supersingular curves, $k \le 6$. (See example curve $E(\mathbb{F}_{23})$.)

The Tate Pairing

$$e: E(\mathbb{F}_p)[q] \times E(\mathbb{F}_{p^k})[q] \to \mathbb{F}_{p^k}^*$$

satisfies the following properties:

Non-degeneracy. $\forall P \in E(\mathbb{F}_p)[q] \setminus O \exists Q \in E(\mathbb{F}_{p^k})[q] | e(P,Q) \neq 1.$ Bilinearity. $\forall P \in E(\mathbb{F}_p)[q], Q \in E(\mathbb{F}_{p^k})[q], a \in \mathbb{Z}_q^*,$ $e(aP,Q) = e(P,aQ) = e(P,Q)^a.$

for k small, **this means**:

DLP methods can be used to solve ECDLP. (See Thm. 1.)

ID-Based Crypto with pairings is efficient.

Visualizing Pairings

(src: M. Scott, The Tate Pairing)

Miller's Algorithm

Written by V. Miller in 1986, never formally published.

- Foundation of all modern pairing computation.
- Like scalar multiplication + some extras. Not particularly fast.

Input: group order q, points $P \in E(\mathbb{F}_p)$, $Q \in E(\mathbb{F}_{p^k})$ **Output**: Tate pairing evaluation, $e(P,Q) \in \mathbb{F}_{p^k}^*$ $f \leftarrow 1, T \leftarrow P$ /* $f \in \mathbb{F}_{p^k}$, $T \in E(\mathbb{F}_p)$ */ **for** $i \leftarrow \log_2 q - 1$ **to** 0 **do** $f \leftarrow f^2 \cdot l_{T,T}(Q)/v_{2T}(Q), T \leftarrow 2T$

if
$$q_i = 1$$
 then $f \leftarrow f \cdot l_{T,P}(Q) / v_{T+P}(Q)$, $T \leftarrow T+P$

end

return *f*

Visualizing Miller's Algorithm

(src: M. Scott, Efficient Implementation of Cryptographic pairings)

Conclusion

- ID-Based Crypto is a great alternative for some environments. (Particularly, resource-constrained devices; wireless sensor networks?)
- ID-Based Crypto with pairings is compact and fun!
- Lack of supporting standards.
- References/Resources:
 - Canetti, Rivest, Special Topics in Cryptography, Lec. 25: Pairing-Based Cryptography, 04.
 - Mao, Modern Cryptography: Theory and Practice, 2003.
 - Hankerson, Menezes, Vanstone, Guide to Elliptic Curve Cryptography, Springer 04.
 - http://www.computing.dcu.ie/ mike/tate.html The Tate Pairing.
 - M. Scott, Presentation: Efficient Implementation of Cryptographic pairings.
 - Pairing-Based Crypto Lounge.

http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html