Identity-Based Cryptography T-79.5502 Advanced Course in Cryptology

Billy Brumley
billy.brumley at hut.fi

Laboratory for Theoretical Computer Science
Helsinki University of Technology

Outline

■ Classical ID-Based Crypto; Self-Certified Keys
■ Bilinear Maps, ID-Based schemes

- Elliptic Curves
- Tate Pairing, implementation

Identity-Based Cryptography

■ PKI doesn't really scale well. Instead (Shamir 84), let's use a user's Identity (ID) as a public key.
$■ \Rightarrow$ key channels are no longer needed! (don't have to "lookup" a user's public key)
■ Unconditional Trust of the Trusted Third Party (TTP). (Well, most of the time...)
$■ \Rightarrow$ TTP can read everything and forge everything. Acceptable in some cases?

Shamir's ID-Based Signatures

Algorithm 13.1:

\square Setup. (TTP) $N=p q, e \in \mathbb{Z}_{N}^{*}, d=e^{-1} \bmod \phi(N)$, $\mathrm{H}:\{0,1\}^{*} \mapsto \mathbb{Z}_{\phi(N)} .\{N, e, \mathrm{H}\}$ are public, system-wide parameters; d is TTP's private master key.

■ User Keygen. $g=I D^{d}(\bmod N)(g$ is private $)$
\square Sign. $t=r^{e}(\bmod N), s=g \cdot r^{\mathrm{H}(t \| M)}(\bmod N)$ where $r \in_{R} \mathbb{Z}_{N}^{*}$ and M is the message; the signature is $\{s, t\}$.
$■$ Verify. TRUE iff $s^{e} \equiv I D \cdot t^{\mathrm{H}(t \| M)}(\bmod N)$
$s^{e}=\left(g r^{\mathrm{H}(t \| M)}\right)^{e}=I D^{d e} r^{e \cdot \mathrm{H}(t \| M)}=I D \cdot t^{\mathrm{H}(t \| M)}$

Self-Certified Keys

■ Instead of verifying public keys from a TTP signature, extract the public key using the user's identity (ID) (Girault 91).

■ Reduced storage: a TTP signature on a key is no longer needed.
■ Computationally efficient: keys can be extracted using only 1 exponentation (scalar mult), while verifying public keys from a signature takes 2.

- The authenticity of SC keys cannot be explicitely verified. (The authenticity is implicit, so they are sometimes called implicit certificates.)

■ SC keys can only be used with the same cryptographic settings in which they were generated.

Implicit Certificates

TTP has private key v and public key V. Function f maps a group element R and message m to \mathbb{Z}_{q} as $f(R, m) \mapsto \mathrm{P}(R)+\mathrm{H}(m) \bmod q$ where P is a projection and H a hash function. (It is public, anyone can calculate it.)

TTP \longleftarrow Alice: G^{a}

$$
\text { TTP: }\left\{\begin{array}{l}
R=G^{k} G^{a} \\
r=f(R, I D) \\
\bar{s}=-k-v r(\bmod q)
\end{array}\right.
$$

Alice \longleftarrow TTP: $\{R, \bar{s}\}$

Alice's private key is $s=a-\bar{s}(\bmod q)$. The implicit certificate is R and Alice's public key is extracted by first computing $r=f(R, I D)$ then

$$
V^{r} R=G^{v r+k+a}=G^{v r+k+\bar{s}+s}=G^{v r+k-k-v r+s}=G^{s}
$$

Properties of Bilinear Maps

■ Exponentation in groups. Denoted $g^{k}=g \cdot g \cdot \ldots \cdot g$ in (G, \cdot) or $k P=P+P+\cdots+P$ in $(G,+)$. (Both k times.)

- Consider the two groups $\left(G_{1},+\right)$ and $\left(G_{2}, \cdot\right)$ of prime order q. A bilinear map

$$
e: G_{1} \times G_{1} \rightarrow G_{2}
$$

has three useful properties:
■ Bilinearity. $\forall P, Q \in G_{1}, \forall a, b \in \mathbb{Z}_{q}^{*}, e(a P, b Q)=e(b P, a Q)=e(P, Q)^{a b}$
■ Non-Degeneracy. $\forall P \in G_{1} \backslash O, e(P, P) \neq 1$. (Hence $e(P, P)$ generates G_{2}.)

- Computability. e is efficiently computable.
- Typically, G_{1} is an elliptic curve and G_{2} a finite field. (The notation reflects this.)

Bilinear Maps \& Discrete Logs

Theorem 1. The Discrete Log Problem in G_{1} is no harder than the Discrete Log Problem in G_{2}.
Proof. Given $Q=a P \in G_{1}$, we want to know $\log _{P} Q$ in G_{1}. From bilinearity, we have
$e(P, Q)=e(P, a P)=e(P, P)^{a}$ so we calculate $P^{\prime}=e(P, P) \in G_{2}$ and $Q^{\prime}=e(P, Q) \in G_{2}$. We then calculate $a=\log _{P^{\prime}} Q^{\prime}$ in G_{2}, and $a=\log _{P} Q$ in G_{1} also holds.

Decisional DH Problem (DDH)

Definition 13.1.

Decisional Diffie-Hellman (DDH) Problem: in ($G,+$):
■ INPUT: Four elements $P, a P, b P, c P \in G$. P generates G.

■ OUTPUT: YES iff $c \equiv a b(\bmod \# G)$.
DDH can't be harder than CDH; given a CDH solver, one can solve DDH.

Can DDH be easy if CDH is hard?

Bilinear Maps \& Decisional DH

Theorem 2. The Decisional Diffie-Hellman Problem is easy in G_{1}.
Proof. Given $P, a P, b P, c P \in G_{1}$ with $a, b, c \in_{R} \mathbb{Z}_{q}^{*}$, it follows that

$$
\begin{aligned}
e(a P, b P) & =e(P, P)^{a b} \text { and } \\
e(P, c P) & =e(P, P)^{c}
\end{aligned}
$$

As e is non-degenerate, $c \equiv a b(\bmod q)$ iff $e(a P, b P)=e(P, c P)$.

1-Round 3-Party DH Key Agreement

\square Joux 00, Sec. 13.3.6 Mao. Not ID-Based. One-round tripartite DH key agreement; classical DH takes more rounds. Wonderfully simple!
\square Assume the previous notation with $e: G_{1} \times G_{1} \rightarrow G_{2}$ a bilinear map and P a generator of G_{1} with order q.

- Three parties A, B, C have private keys $a, b, c \in \mathbb{Z}_{q}^{*}$ and want to agree on a key. They each broadcast their public keys (elements of G_{1}):

$$
[A: a P \longrightarrow B, C][B: b P \longrightarrow A, C][C: c P \longrightarrow A, B]
$$

■ They then calculate $\left[A: e(b P, c P)^{a}\right]\left[B: e(a P, c P)^{b}\right]\left[C: e(a P, b P)^{c}\right]$

- Due to bilinearity, they share the secret key

$$
e(b P, c P)^{a}=e(a P, c P)^{b}=e(a P, b P)^{c}=e(P, P)^{a b c} \in G_{2}
$$

Bilinear DH Assumption

- This gives a new hardness assumption, The Bilinear Diffie-Hellman (BDH) Assumption:
■ Given $\{P, a P, b P, c P\}$, the computation of $e(P, P)^{a b c}$ is hard.

Pairings \& ID-Based Encryption

Boneh \& Franklin 01:

\square Setup. (TTP) Again, $e: G_{1} \times G_{1} \rightarrow G_{2}$ a bilinear map and P a generator of G_{1} with order q. TTP generates private key $v \in_{R} \mathbb{Z}_{q}^{*}$ and public key $V=v P \in G_{1}$. Public functions $\mathrm{H}_{1}:\{0,1\}^{*} \rightarrow G_{1}$ and $\mathrm{H}_{2}: G_{2} \rightarrow\{0,1\}^{*}$.
\square Keygen. $W=v \mathrm{H}_{1}(I D) \in G_{1} . I D$ is the user's identify and W the private key. The public key is actually ID!

E Encrypt. Given TTP's public key V, to encrypt the message m to identity $I D$:

$$
\begin{aligned}
\operatorname{Enc}(V, I D, m) & =\left\{c_{1}, c_{2}\right\} \\
c_{1} & =k P \text { where } k \in_{R} \mathbb{Z}_{q}^{*} \\
c_{2} & =m \oplus \mathrm{H}_{2}\left(e\left(\mathrm{H}_{1}(I D), V\right)^{k}\right)
\end{aligned}
$$

\square Decrypt. To decrypt $\left\{c_{1}, c_{2}\right\}$ using private key W :

$$
\begin{aligned}
\operatorname{Dec}\left(c_{1}, c_{2}, W\right) & =c_{2} \oplus \mathrm{H}_{2}\left(e\left(W, c_{1}\right)\right)=c_{2} \oplus \mathrm{H}_{2}\left(e\left(v \mathrm{H}_{1}(I D), k P\right)\right) \\
& =c_{2} \oplus \mathrm{H}_{2}\left(e\left(\mathrm{H}_{1}(I D), P\right)^{v k}\right)=c_{2} \oplus \mathrm{H}_{2}\left(e\left(\mathrm{H}_{1}(I D), v P\right)^{k}\right) \\
& =c_{2} \oplus m \oplus c_{2}=m
\end{aligned}
$$

Scheme Comments

- TTP can read everything.

■ Encryption can take place before ID has a private key.

- How are H_{1} and H_{2} realized?

Elliptic Curves

\square Elliptic curve $E(K): y^{2}=x^{3}+a x+b$ when $\operatorname{Char}(K) \neq 2,3$.
\square Form a group from the points (solutions) on the curve over K. (plus an identity element O).

- Group law:
\square Identity. $\forall P \in E, P+O=O+P=P$. (O is the point-at-infinity.)
- Negatives/Inverses. $\forall P=(x, y) \in E,-P=(x,-y)$ and $P+-P=O$.
\square Point Addition/Doubling. With $P=\left(x_{1}, y_{1}\right) Q=\left(x_{2}, y_{2}\right) R=\left(x_{3}, y_{3}\right), P+Q=R$ is:

$$
\begin{aligned}
x_{3} & =\lambda^{2}-x_{1}-x_{2} \\
y_{3} & =\lambda\left(x_{1}-x_{3}\right)-y_{1}, \text { where } \lambda \text { is the slope: } \\
\lambda & = \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P \neq Q \text { (point addition) } \\
\frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { if } P=Q \text { (point doubling) }\end{cases}
\end{aligned}
$$

\square Scalar Multiplication: $k P=\sum_{i=0}^{\log _{2} k} k_{i} 2^{i} P$
(1986) N. Koblitz and V. Miller independently suggested elliptic curves for cryptographic use.

The Group Law Geometrically

(src: Hankerson, Menezes, Vanstone, Guide to Elliptic Curve Cryptography, Springer 04)

(a) Addition: $P+Q=R$.

(b) Doubling: $P+P=R$.

Elliptic Curves over a Finite Field

■ What's the order of the curve? Well, logically $\# E \approx p \ldots$
■ Hasse Bound: $p+1-2 \sqrt{p} \leq \# E\left(\mathbb{F}_{p}\right) \leq p+1+2 \sqrt{p}$, or...
■ \# $E=p+1-t$ where t is "trace of the Frobenius." (small)
■ if p divides t the curve is called supersingular.
■ Example: $E\left(\mathbb{F}_{23}\right): y^{2}=x^{3}+1$ is cyclic; $P=(21,4)$ generates the entire group and $\operatorname{ord}(P)=\# E=24 . t=0$ so E is supersingular.

$1 P$	$(21,4)$	$7 P$	$(14,10)$	$13 P$	$(19,11)$	$19 P$	$(13,6)$
$2 P$	$(12,21)$	$8 P$	$(0,1)$	$14 P$	$(1,18)$	$20 P$	$(2,20)$
$3 P$	$(16,7)$	$9 P$	$(10,14)$	$15 P$	$(10,9)$	$21 P$	$(16,16)$
$4 P$	$(2,3)$	$10 P$	$(1,5)$	$16 P$	$(0,22)$	$22 P$	$(12,2)$
$5 P$	$(13,17)$	$11 P$	$(19,12)$	$17 P$	$(14,13)$	$23 P$	$(21,19)$
$6 P$	$(15,15)$	$12 P$	$(22,0)$	$18 P$	$(15,8)$	$24 P$	$(0,0)=O$

Elliptic Curve over a Finite Field (Fig.)

$$
E\left(\mathbb{F}_{23}\right): y^{2}=x^{3}+1 . \# E=p+1-t=23+1-0=24(23 \text { points }+O)
$$

Elliptic Curves \& Discrete Logs

- Pollard's Rho Algorithm: G of order q, solves the general DLP in $\approx \sqrt{q}$ steps (exponential).
- Index Calculus (IC) for \mathbb{Z}_{p}^{*} : solves DLP in $\approx e^{(2+o(1)) \sqrt{\log p \log \log p}}$ (subexponential).
- An IC analogue for solving ECDLP would try to "lift" points to the rationals \mathbb{Q}; the size of lifted points is not practical.
- Hence, the best algorithm for solving ECDLP is exponential-this is why we like ECC!

The Tate Pairing

- For curves, the smallest positive integer k such that $p^{k} \equiv 1(\bmod q)$ is the embedding degree. (Intuitively k is the multiplicative order of p modulo q.)

■ For pairings, we want k small(ish). For random curves, k is probably big; for supersingular curves, $k \leq 6$. (See example curve $E\left(\mathbb{F}_{23}\right)$.)

■ The Tate Pairing

$$
e: E\left(\mathbb{F}_{p}\right)[q] \times E\left(\mathbb{F}_{p^{k}}\right)[q] \rightarrow \mathbb{F}_{p^{k}}^{*}
$$

satisfies the following properties:
\square Non-degeneracy. $\forall P \in E\left(\mathbb{F}_{p}\right)[q] \backslash O \exists Q \in E\left(\mathbb{F}_{p^{k}}\right)[q] \mid e(P, Q) \neq 1$.
Bilinearity. $\forall P \in E\left(\mathbb{F}_{p}\right)[q], Q \in E\left(\mathbb{F}_{p^{k}}\right)[q], a \in \mathbb{Z}_{q}^{*}$, $e(a P, Q)=e(P, a Q)=e(P, Q)^{a}$.

■ for k small, this means:

- DLP methods can be used to solve ECDLP. (See Thm. 1.)
\square ID-Based Crypto with pairings is efficient.

Visualizing Pairings

(src: M. Scott, The Tate Pairing)

Miller's Algorithm

■ Written by V. Miller in 1986, never formally published.

- Foundation of all modern pairing computation.

■ Like scalar multiplication + some extras. Not particularly fast.

Input: group order q, points $P \in E\left(\mathbb{F}_{p}\right), Q \in E\left(\mathbb{F}_{p^{k}}\right)$
Output: Tate pairing evaluation, $e(P, Q) \in \mathbb{F}_{p^{k}}^{*}$
$f \leftarrow 1, T \leftarrow P \quad / * f \in \mathbb{F}_{p^{k}}, T \in E\left(\mathbb{F}_{p}\right)^{* /}$
for $i \leftarrow \log _{2} q-1$ to 0 do
$f \leftarrow f^{2} \cdot l_{T, T}(Q) / v_{2 T}(Q), T \leftarrow 2 T$
if $q_{i}=1$ then $f \leftarrow f \cdot l_{T, P}(Q) / v_{T+P}(Q), T \leftarrow T+P$
end
return f

Visualizing Miller’s Algorithm

(src: M. Scott, Efficient Implementation of Cryptographic pairings)

$$
\mathbf{I}_{\mathbf{T}, \mathrm{T}}(\mathbf{Q})=\left(y_{q}-y_{j}\right)-\lambda_{j}\left(x_{q}-x_{j}\right)
$$

Line of slope λ_{j}

Conclusion

■ ID-Based Crypto is a great alternative for some environments. (Particularly, resource-constrained devices; wireless sensor networks?)
■ ID-Based Crypto with pairings is compact and fun!
■ Lack of supporting standards.
■ References/Resources:
Canetti, Rivest, Special Topics in Cryptography, Lec. 25: Pairing-Based Cryptography, 04.

- Mao, Modern Cryptography: Theory and Practice, 2003.

Hankerson, Menezes, Vanstone, Guide to Elliptic Curve Cryptography, Springer 04.

- http://www.computing.dcu.ie/ mike/tate.html The Tate Pairing.
M. Scott, Presentation: Efficient Implementation of Cryptographic pairings.
- Pairing-Based Crypto Lounge.
http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html

