RSA-OAEP and Cramer-Shoup

Olli Ahonen Laboratory of Physics, TKK

11th Dec 2007 T-79.5502 Advanced Cryptology

Part I: Outline

- RSA, OAEP and RSA-OAEP
- Preliminaries for the proof
- Proof of IND-CCA2 security for RSA-OAEP
 - Setup and process
 - Decryption oracle service
 - Likelihood of success
 - Fujisaki's method
- Safe modulus size

Basic RSA

- Random primes *p* and *q*
- Public N = pq; private $\Phi(N) = (p 1)(q 1)$
- Random public $e \in \mathbb{Z}^*_{\phi(N)}$
- Private d such that ed mod $\Phi(N) = 1$
- Ciphertext $c = m^e \mod N$
- Decryption: $m = c^d \mod N$
- IND-CPA (i.e., semantically) secure

Basic RSA: not secure enough

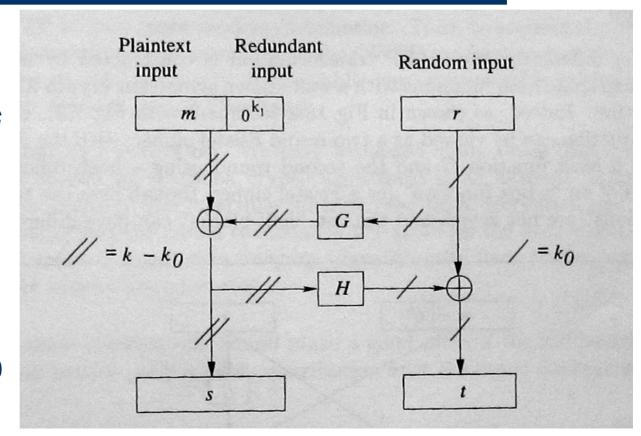
- Assume: Alice acts as a decryption oracle, if the message appears random
- Malice wishes to decrypt $c = m^e \mod N$
 - Picks random $r \in \mathbb{Z}^*_N$
 - Sends to Alice $c' = r^e c \mod N$
 - Receives rm mod N
 - Learns *m* by division mod *N*

Optimal asymmetric encryption padding (OAEP)

- M. Bellare and P. Rogaway in 1994
 - Add randomness
 - Mix the input
 - Encrypt with a one-way trapdoor permutation (OWTP), e.g., RSA
- IND-CCA2 secure
 - Assuming the OWTP really is one-way
- Practically efficient

OAEP structure

- $k_0 < |N|/2$
- Hash functions G and H
- *s*||*t* input to encryption
 - E.g: |N| = 2048 $k_0 = k_1 = 160$



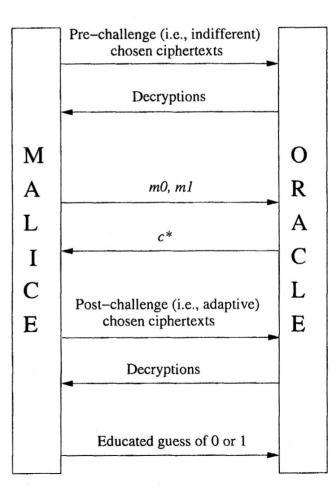
W. Mao, Modern Cryptography: Theory and Practice (Prentice Hall, 2004)

RSA-OAEP algorithm

- $|N| = |m| + k_1 + k_0$; 2^{-k₀} and 2^{-k₁} negligible
- Encryption
 - *r* = rand(k_0); *s* = (*m*||0..0)⊕*G*(*r*); *t* = *r*⊕*H*(*s*)
 - $c = (s||t)^e \mod N$
- Decryption
 - $|-s||t = c^d \mod N; |s| = |m| + k_1; |t| = k_0$
 - $u = t \oplus H(s)$; $v = s \oplus G(u)$
 - If $v == m || 0^{k_1}$, extract *m*; else reject

IND-CCA2 game

- Oracle provides PPT Malice with requested decryptions (except for c*)
- Malice is capable if he guesses which of the two plaintexts c* encrypts
- Required: non-negligible Adv = 2 Pr["correct guess" | history] - 1



Random oracle

- Idealized hash function $\mathcal{G}: \{0,1\}^k \rightarrow \{0,1\}^n$
- Output
 - Uniformly random (really!)
 - Deterministic
 - Efficient
- Imaginary
- Computationally indistinguishable from a good real-world hash function

Simulating a random oracle

- At startup, initialize *G*-list to empty
- When value $\mathcal{G}(a)$ is queried
 - Lookup a in G-list
 - If not found
 - Generate random value for $\mathcal{G}(a)$
 - Store (a, G(a)) in the G-list
 - Return the stored value
- Precise local simulation in PPT

Proof of IND-CCA2 security

• General idea:

∃ algorithm *A* that is IND-CCA2 capable

- \Rightarrow OWTP *f* (e.g., RSA) can be inverted
- \Leftrightarrow

OWTP f is not invertible

- \Rightarrow IND-CCA2 security
- "Reduction to contradiction"
- PPT algorithms, non-negligible advantages

RSA-inverting algorithm *M*

- Input: Random point $c^* = f(w^*)$
- Output: Preimage $w^* = f^{-1}(c^*)$
- Encapsulates IND-CCA2 capable A
- Random-oracle simulator of the OAEP hash functions *G* and *H* for *A*
- Decryption oracle for A
 - Based on the G- and H-lists
 - May reject even if A submits a valid ciphertext

$$w^* = s^* ||t^* = f^{-1}(c^*)|$$

Inversion process

- *M* plays two IND-CCA2 games with *A*
 - Round 1: *M* challenges *A* with *c**
 - c^* has nothing to do with $(m_0, m_1)!$
 - Round 2: *M* challenges *A* with $c_2^* = c^* \alpha^e \mod N$
 - Random $\alpha \in \mathbb{Z}^*_N$ (probability of bad α negligible)
- If A queries $H(s^*)$ and $H(s^*_2)$, M finds $f^{-1}(c^*)$
 - PT lattice method by Fujisaki et al.
- How probable are the queries?
- What if A discovers c* is a hoax?

 $s = (m||0..0) \oplus G(r)$ $t = r \oplus H(s)$ c = f(s||t)

Decryption oracle service

- Maintain a list of potential ciphertext-plaintext tuples $\{(f(w_i), w_i, v_i)\}_i$ For each (g, G(g)) for each (h, H(h)) $w = h||(g \oplus H(h)); v = G(g) \oplus h$
- If $f(w_i) = c^*$, $w_i = w^* = f^{-1}(c^*)$; success!
- To decrypt c
 - If $c = f(w_i)$ and $v_i = \Delta || 0..0$, return $\Delta = m$
 - Else reject

 $s||t = f^{-1}(c)$ $r = t \oplus H(s)$ $m||0..0 = s \oplus G(r)$

Quality of the decryption service

- If A creates a valid c without G or H, M rejects c illegally
- (*s*, *H*(*s*)) missing \Rightarrow Pr["*r* correct"] = 2^{-k_0} \Rightarrow Pr[s \oplus G(*r*) = Δ ||0^{k_1}] = 2^{-k_1}
- Similarly for missing (*r*, *G*(*r*))
- If G(r) or H(s) not queried, reject is correct except for (negligible) Pr ~ 2^{-k₀} + 2^{-k₁}
- Good decryption quality

 $s^*||t^* = f^{-1}(c^*)$ $r^* = t^* \oplus H(s^*)$ $m^*||0...0 = s^* \oplus G(r^*)$

Likelihood of successful inversion

1 of 3

- Define the following events
- **DBad** = *M* rejects a valid ciphertext
- AskH = A has queried for $H(s^*)$
- AskG = A has queried for $G(r^*)$
- AskH or AskG may reveal the deception in c*
 - **Bad** = **AskH** \cup **AskG** \cup **DBad**
- AWins = A can correctly guess the IND-CCA2 game challenge bit b

<pr[B]</p> Likelihood of successful inversion

2 of 3

Pr[A,B]

 $= \Pr[A|B] \Pr[B]$

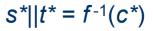
• Pr[AWins]¬Bad] $\equiv \Pr[AWins, \neg Bad] / \Pr[\neg Bad] = 1/2$ $\Rightarrow \Pr[AWins, \neg Bad] = (1 - \Pr[Bad])/2$ • Adv + 1/2 = Pr[AWins] $\equiv \Pr[AWins, \neg Bad] + \Pr[AWins, Bad]$ ≤ Pr[AWins,¬Bad] + Pr[Bad] $= \Pr[Bad]/2 + 1/2$ • \Rightarrow Pr[**Bad**] \ge 2Adv

Pr[A U B] = Pr[A] + Pr[B] – Pr[A,B] ≤ Pr[A] + Pr[B]

Likelihood of successful inversion

3 of 3

- Pr[Bad] ≤ Pr[AskH ∪ AskG] + Pr[DBad]
 = Pr[AskH] + Pr[¬AskH,AskG] + Pr[DBad]
 ≤ Pr[AskH] + Pr[AskG]¬AskH] + Pr[DBad]
- AskG|¬AskH = $G(r^*)$ has been queried when $H(s^*)$ has not \Rightarrow Pr[AskG|¬AskH] = 2^{-k_0}
- $\Pr[AskH] \ge 2(Adv (2^{-k_0} + 2^{-k_1-1}))$
- *M* obtains *s** with non-negligible probability
 - After this, *M* can let *A* know the truth about *c**



Fujisaki's method

- $|s^*| > |w^*|/2$; $Int(t^*) < \sqrt{N}$
- Use s^* and s_2^* to solve for $Int(t^*)$ in $(2^{k_0}Int(s^*) + Int(t^*))^e \equiv c^* \pmod{N}$
- *q* = larger *H*-list length
- For each pair (s,s_2) , solve for Int(t) twice
- \Rightarrow Inversion takes time $2\tau_A + q^2 O((\log_2 N)^3)$ τ_A = running time of IND-CCA2 on RSA-OAEP

Practically safe parameters

- Evaluating *H* and *G* is very efficient in reality
- Dedicated attacker may make $q \approx 2^{50}$ queries
- Now RSA inversion time > 2¹⁰⁰ ≫ 2⁸⁶ for the Number Field Sieve method, if |N| = 1024
- |N| = 2048 considered safe
 - NFS takes time 2¹¹⁶
- $k_0 = k_1 = 160$ considered safe
- Up to 84% of s||t can be actual message m

Part II: Outline

- Decisional Diffie-Hellman problem
- Cramer-Shoup scheme
 - Key setup
 - Encryption and decryption
- Overview of proof of IND-CCA2 security
 - DDH reduction

Decisional Diffie-Hellman problem

- Given
 - Description of an abelian group G
 - $(g, g^a, g^b, g^c) \in G^4; g = \operatorname{gen}(G)$
- Is $ab \equiv c \pmod{(G)}$?
- Easy in supersingular elliptic-curve groups
- Hard in groups of finite fields

Cramer-Shoup

- R. Cramer and V. Shoup in 1998
 - CCA2-enhanced ElGamal encryption
 - More public and private parameters
 - Hashing
- IND-CCA2 secure
 - Assuming Finite-Field Decisional D-H is hard
- Data integrity check
- Resource need ~ twice that of ElGamal

Cramer-Shoup key setup

- Large prime q = ord(G); G = plaintext space
- Pick random $g_1, g_2 \in G$
- Pick random $x_1, x_2, y_1, y_2, z \in [0,q)$
- $c = g_1^{x_1} g_2^{x_2}; d = g_1^{y_1} g_2^{y_2}; h = g_1^z$
- Choose a hash function $H: G^3 \rightarrow [0,q)$
- Public key: (*g*₁, *g*₂, *c*, *d*, *h*, *H*)
- Private key: (x_1, x_2, y_1, y_2, z)

Cramer-Shoup operation

- Encryption
 - Message $m \in G$; Pick random $r \in [0,q)$
 - $u_1 = g_1^r$; $u_2 = g_2^r$; $e = h^r m$
 - $\alpha = H(u_1, u_2, e); v = c^r d^{r\alpha}$
 - The ciphertext is (u_1, u_2, e, v)
- Decryption
 - $\alpha = H(u_1, u_2, e)$
 - If $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} = v$, $m = e/u_1^z$
 - Else reject

Proof of IND-CCA2 security

- Same general idea as with RSA-OAEP: ∃ algorithm *A* that is IND-CCA2 capable
 - ⇒ Finite-Field Decisional Diffie-Hellman can be answered efficiently by M_A
 - \Leftrightarrow FFDDH is hard \Rightarrow IND-CCA2 security
- Better than the proof for RSA-OAEP
 - No need for controversial random oracles
 - Reduction DDH \rightarrow IND-CCA2 is linear

Reduction

- M_A : Can the arbitrary input $(g_1, g_2, u_1, u_2) \in G^4$ be a Diffie-Hellman quadruple? (DDH)
- Play the IND-CCA2 game with A
 - Receive chosen (m_0, m_1) , challenge with C^*
- Input is a DHq \Rightarrow C* encrypts m_b
- Input is not a DHq \Rightarrow C^{*} uniformly distributed
- Based on A's guess on b, M_A can decide whether (g₁, g₂, u₁, u₂) is a DHq or not