ID-based authentication frameworks and primitives

Mikko Kiviharju
Helsinki University of Technology
mkivihar@cc.hut.fi

Overview

- Motivation
- History and introduction of IB schemes
- Mathematical basis
- Boneh-Franklin IB cryptosystem
- IB-PKI vs. conventional PKI
- Conclusion

Agenda

- Motivation

PK authentication infrastructures

- Main functions:
- signature schemes
- key agreement
- Functions usually constructed with asymmetric encryption primitives
- Not a requirement, though
- Main goal: minimize the need for and exchange of secret information

Directory-based PKI

- public_key = F(private_key)
- Problems: binding the public information to actual identity (due to restrictions in forming the asymmetric key pairs)
- Current PKI solution: certificates and CAs \rightarrow heavy infrastructure and administration costs

Current PKI (e.g. X. 509 \& LDAP)

Informative public keys?

- What if the key generation is reversed?
- private_key = F(public_key)
- No secrecy here...
- private_key $=\mathbf{F}$ (master_key, public_key)
- Public key has freedom of choice
- Public key ?= user's identity

Identity as the public key

Deterministic algorithm => trivial binding from ID to key material

Agenda

- History and introduction of IB schemes
- Mathematical basis
- Boneh-Franklin IB cryptosystem
- IB-PKI vs. conventional PKI
- Conclusion

History

- Shamir introduced the concept in 1984
- An RSA-based signature scheme
- No key agreement, nor encryption
- Girault's scheme in 1991
- RSA-based PKI functionality without actual encryption
- Not exactly ID-based (public key depends on the secret key as well)
- Mathematical basis
- Special elliptic curve classes for ECDLP in 1983 by Menezes, Okamoto and Vanstone
- ID-based cryptosystems based on elliptic curves
- Key agreement schemes by Sakai, Ohgishi \& Kasahara (SOK) and Joux in 2000
- First fully fledged IB-PKI by Boneh and Franklin 2001

Properties of IB-PK-AFs

(*) Identity-Based Public Key Authentication Framework

- Trusted Authority (TA) handles key generation for everyone
- Highly centralized trust element (TA can decrpte everything)
- Keygen essentially an authentication service (similiar to
- No key channel needed
- Binding of identity and public-key based on trust in
- The generation function
- Uncompromised TA master key
- Sound TA authentication service
- Non-interactivity

Non-interactivity in IB-PK-AFs

- No need to contact directories
- Verification of a signature
- Key agreement
- No need to establish key channels
- Authenticated key establishment
- (Key) data origin authentication
- ... assuming TA is honest, of course

Functions in IB-PK-AFs

(*) Identity-Based Public Key Authentication Framework

System dependent, done at each function

Agenda

- Motivation
- History and introduction of IB schemes

- Mathematical basis

- Boneh-Franklin IB cryptosystem
- IB-PKI vs. conventional PKI
- Conclusion

Elliptic curves (1/4)

- Sets of pairs of field elements (points) satisfying a third degree polynomial $y^{2}[+x y]=x^{3}+a x+b$
- Any field is ok, in EC cryptography finite fields of prime a power of a small prime order are used
- An additive operation is defined on the points of a certain EC => a group is formed.
- Repeated additions of a fixed point equal exponentiation
- Normal finite field methods for extracting a discrete logarithm do not work due to lack of "multiplication" operation between group elements

Elliptic curves (2/4)

Elliptic curve group defined on real numbers, with addition procedure

Elliptic curve group defined on a finite field (23 points)

Elliptic curves (3/4)

- Usage in PKI based on ECDLP
- Encrypting usually done with extracting (hashing) an element from the EC group
- ECC -> "real" PKI (but still dir-based...)
- Selecting the underlying field order, from:
$-\left|E\left(\mathrm{~F}_{q}\right)\right|=q+1+t=O(q),-2 \sqrt{q} \leq t \leq 2 \sqrt{q}$

- Key size $=2$ * security parameter

Elliptic curves (4/4)

- For a prime power $q=p^{m}$, the EC group is described by a tuple (q, a, b, G, n, h), where
$-G \in E\left(F_{q}\right)$ is the generator of a subgroup of prime order n in the EC group, and $|\langle G\rangle|=n, n| | E\left(F_{q}\right) \mid$
- $h=\left|E\left(F_{q}\right)\right| / n$ cofactor, preferably small (=1) integer
- MOV-attack resistance requires that n does not divide $q^{B}-1$ for all small \mathbf{B} (<20, or small enough such that the subexp $D L$ is hard in the underlying field)
- Fortunately, a subset of these weak curves have other applications

Weak elliptic curves

- ECs, for which the underlying field characteristic p divides the Frobenius trace t, are called supersingular (a subset of the type of elliptic curves susceptible to MOV-attacks)
- Weakness: an efficient mapping from the EC group to the underlying field with a guaranteed small extension (which has subexponential solvability for DL)

Weil pairing for ECs (1/2)

- Isomorphism (= invertible)
- Map between (prime-) order- α subgroups of an elliptic curve and the underlying field)

Weil pairing for ECs (2/2)

- Fix an order- α generator $z \in E\left(\mathrm{~F}_{p^{k}}\right)$ such that $-P \in\langle z\rangle$ or $Q \in\langle z\rangle$, but not both
- Then the Weil pairing is defined as

$$
\begin{aligned}
& \left(e_{z}(P, Q)=\sqrt[\alpha]{1_{\mathrm{F}_{p^{k}}}}\right) \wedge\left(e_{z}(P, Q) \neq 1_{\mathrm{F}_{p^{k}}}\right) \Leftrightarrow \\
& (\operatorname{ord}(P)=\operatorname{ord}(Q)=\alpha) \wedge(\forall(a, b \in \mathbf{Z}): P \neq a Q \wedge Q \neq b P)
\end{aligned}
$$

- The supersingular property condition assures that $E\left(\mathrm{~F}_{p^{k}}\right)$ is non-cyclic, and that there exists a non-empty order- α subgroup for P , the elements of which are not mapped to unity

Weil pairing properties

Notation: $\left(\mathrm{G}_{1},+\right),\left(\mathrm{G}_{2},{ }^{*}\right)$ groups under Weil pairing (G_{1} is the $E C$ subgroup and G_{2} the underlying field ext. subgroup)

- Identity: $\forall\left(P \in G_{1}\right): e_{2}(P, P)=1_{C_{2}}$
- Bilinearity: $\forall\left(P, Q \in G_{1}\right):, e_{z}(P+R, Q)=e_{z}(P, Q) e_{z}(R, Q)$

$$
e_{z}(P, Q+R)=e_{z}(P, Q) e_{z}(P, R)
$$

- Non-degeneracy: $\forall\left(P \in G_{1}, P \neq O\right): e_{z}(P, z) \neq 1_{G_{2}} \neq e_{z}(z, P)$
- (P and z must be independent according to the mapping definition)
- Efficiency: mapping is practically efficiently computable

Weil pairing: MOV-reduction

- According to Menezes-Okamoto-Vanstone (-83)
- Given $P, n P \in E\left(F_{p}\right)$
- Apply Weil pairing; according to bilinearity property: $\xi=e_{z}(P, z)$

$$
\eta=e_{z}(n P, z)=e_{z}(P, z)^{n}=\xi^{n}
$$

- ... which is a DL problem in a finite field $\mathrm{F}_{p^{4}}, k \leq 6$
- ... with a running time of $O\left(e^{\left.e^{\operatorname{cog} g^{1 s} p(\log (\operatorname{LOg} g)}\right)^{2 s}}\right)$
- (cf. o $\left(e^{0.5 \mathrm{sp}}\right)$ for ECDLP)

Modified Weil pairing

- What if $\mathrm{P}=\mathrm{aQ}$? (This is the case with e.g. BonehFranklin cryptosystem)
$e_{z}(P, Q)=e_{z}(a Q, Q)=e_{z}(Q, Q)^{a}=1_{G_{2}}^{a}$
- Apply a distortion function (Verheul, 2001)
- Modified Weil pairing, defined as $P, Q \in G_{1}: e(P, Q)=e_{z}(P, \Phi(Q))$ where $\Phi: E\left(F_{p^{k}}\right) \rightarrow E\left(F_{p^{k}}\right)$ is a "distortion function" mapping a point to a linearly independent point
- Properties
- Symmetry
- Bilinearity

Modified Weil pairing and DDH

- Decisional Diffie-Hellman: given $p, p^{a}, p^{b}, p^{c} \in G$ decide if $a b \equiv c(\bmod |G|)$
- In a general group this seems as hard as DL
- In a supersingular EC group, when given

$$
P, a P, b P, c P \in G_{1} ; a, b, c \in \mathbf{Z}
$$

- Calculate $\eta=e(P, c P)=e(P, P)^{c}$ and $\xi=e(a P, b P)=e(P, P)^{a b}$.
- Now $a b \equiv c\left(\bmod \left|G_{1}\right|\right) \Leftrightarrow \xi=\eta$

Bilinearity "extracts" the discrete logarithm

- DDH is easy in supersingular EC groups!

Agenda

- History and introduction of IB schemes
- Mathematical basis
- Boneh-Franklin IB cryptosystem

Boneh-Franklin IB cryptosystem

- First practical IB cryptosystem (2001)
- Provides actual asymmetric encryption in IB framework
- Provably secure (although not the algorithm 13.2) in INDCCA2 (indistinguishable adaptive chosen-ciphertext in RO model applied in IB framework - conventional PKI is insecure in CCA already)
- Uses bilinear maps (one instantiation is Weil pairings in supersingular EC groups)
- Relies on the bilinearity property of the Weil pairings (= Bilinear DH problem(${ }^{*}$)

$$
\left(^{*}\right)\langle P, a P, b P, c P\rangle \xrightarrow{\text { compute }} e(P, P)^{a b c}
$$

Boneh-Franklin: FullIdent

- Mao's presentation of BF system is not INDCCA2 - secure (BF's BasicIdent is malleable - fails NM-CPA: Malice can modify the ciphertext without knowing the secret r, and NMCPA is a weaker notion than CCA2-security)
- Extra hash functions and random variables are needed for this purpose
- We present here the IND-CCA2-secure FullIdent-scheme

BF: System parameters setup (1/2)

- Performed by TA
- Group descriptions $\left(G_{1},+\right) ;\left(G_{2}, *\right)$
- Bilinear map $e:\left(G_{1},+\right) \times\left(G_{1},+\right) \rightarrow\left(G_{2}, *\right)$
- Generator: $P \in G_{1}$
- Global key material
- Master key:

$$
s \in_{U} \mathbf{Z}_{p} ;\left(p=\left|G_{1}\right|=\left|G_{2}\right|\right)
$$

- Public key: $P_{p u b}=s P$

BF: System parameters setup (2/2)

- Hash functions
- Identity hasher $\quad H_{1}:\{0,1\}^{*} \rightarrow G_{1}$
- Public key hasher $\quad H_{2}: G_{2} \rightarrow\{0,1\}^{n}, n=\log$ size of message and cipher space
- Session key / message integrator

$$
H_{3}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow \mathbf{Z}_{q}^{*} ; q=\operatorname{ord}(P)
$$

- Session key hasher $H_{4}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Publish $\operatorname{Desc}\left\langle G_{1}, G_{2}, e, H_{1}, H_{2}, H_{3}, H_{4}, n, P, P_{p u b}\right\rangle$

BF: User key generation

- Performed by TA to a user after thorough verification of the user's identity
- Key material:
- Public key, deterministically from the ID string:

$$
\begin{aligned}
& Q_{I D}=H_{1}(I D) \in G_{1} \\
\text { - Private key: } & d_{I D}=s Q_{I D}
\end{aligned}
$$

- Identity hash need not be straight to G_{1}, as shown by B\&F in their paper: rather a conventional hash followed by an "admissible encoding function" (simple elliptic curve point calculator)

BF: Encryption, idea

BF: Encryption, operation

- Compute the recipient's $Q_{I D}=H_{1}(I D) \in G_{1}$
- Choose a random session key $\sigma \in\{0,1\}^{n}$
- Set malleability protection $r=H_{3}(\sigma, M)$
- Calculate ciphertext $C=\langle U, V, W\rangle=$

$$
\left\langle r P, \sigma \oplus H_{2}\left(e\left(Q_{I D}, r P_{p u b}\right)\right), M \oplus H_{4}(\sigma)\right\rangle
$$

BF: Decryption, operation

- Compute the session key: $\sigma=V \oplus H_{2}\left(e\left(d_{D}, U\right)\right)$
- Decrypt the message: $M=W \oplus H_{4}(\sigma)$
- Check message integrity: calculate $r=H_{3}(\sigma, M)$
- If $U=r P$, then message is intact
- Accept message M, iff intact

BF: Decryption, correctness

- Message is hidden XORing with an OTP \rightarrow opened correctly, if session key opened correctly

$$
M=W \oplus H_{4}(\sigma)
$$

- For the session key: result of H_{2} must equal that of H_{2} after encryption

$$
\begin{aligned}
& H_{2 D}=H_{2}\left(e\left(d_{I D}, U\right)\right)=H_{2}\left(e\left(s Q_{I D}, r P\right)\right)= \\
& H_{2}\left(e\left(Q_{I D}, r P\right)^{s}\right)=H_{2}\left(e\left(Q_{I D}, r s P\right)\right)= \\
& H_{2}\left(e\left(Q_{I D}, r P_{p u b}\right)\right)=H_{2 E}
\end{aligned}
$$

BF: Instantiation with ECs (1/2)

- Needed
- Group descriptions
- Bilinear map
- Hash functions
- With a k-bit prime p and another prime q, such that $p \equiv 2(\bmod 3) \wedge p=6 q-1$
$-\mathrm{G}_{1}$ is an EC $y^{2}=x^{3}+1$ over F_{p}
$-G_{2}$ is $F_{p^{2}}$
- Use a distortion map $\Phi(x, y)=(\zeta x, y), \zeta \neq 1_{\mathrm{F}_{2}}, \zeta^{3}-1 \equiv 0(\bmod p)$ and a Weil pairing e ' defined with the help of divisors of functions over EC groups

$B F$: Instantiation with ECs (2/2)

- Bilinear map e is now $e(P, Q)=e^{\prime}(P, \Phi(Q))$
- Hash functions (cryptographically strong):
- $\mathrm{H}_{2}-\mathrm{H}_{4}$ as described (e.g. Whirlpool, SHA-256)
$-H_{1}^{*}:\{0,1\}^{*} \rightarrow \mathrm{~F}_{p}$ as a "normal" hash function (above)
- Define function MapToPoint: $\mathrm{F}_{p} \rightarrow G_{1}$

$$
\operatorname{MapToPoint}\left(y_{0}\right)=\binom{6\left(y_{0}^{2}-1\right)^{(2 p-1) / 3}}{6 y_{0}}
$$

- Now the first hash is $H_{1}(I D)=\operatorname{MapToPoint}\left(H_{1}^{*}(I D)\right)$

BF: Security parameter

- If r is exposed, adversary can decrypt M and σ and modify the message at will
- r is protected by the difficulty of extracting discrete logarithm from $r P$ (P is public)
- ... but $r P$ belongs to a supersingular EC group, where a DL solver runs in subexponential time
- Extension parameter defines security parameter

Security notions

- IND-ID-CCA2, adaptive chosen ciphertext attacks for identity-based frameworks
- OWE, One-Way Encryption, defined for standard public-key schemes
- "all-or-nothing" model: M is either bit-by-bit correctly guessed, or the challenge fails

IND-CCA2 sec. in IB framework (1)

- Challenger-adversary game as in normal IND-CCA2; (called IND-ID-CCA2) decryptions and private key extractions are allowed (not for the challenge ID , though)

IND-CCA2 sec. in IB framework (2)

- Adversary assumed to be PPT-bounded
- Adversary wins the game, if he guesses, which of the messages was encrypted
- IND-CCA2 notion satisfied, if the adversary cannot gain a non-negligible (inverse polynomial in the size of the security parameter) advantage in guessing correctly
- Semantic security

BF: Security proof (1/5)

- Assumption: Bilinear DH problem (BDH) is hard in the instantiated group (BDH is assumed to be hard (superpolynomial, albeit subexponential) in supersingular EC groups)
- Proof is a reduction through two types of security notions and cryptosystems to an algorithm of solving BDH

$B F$: Security proof (2/5)

- Basic theorem:
- Assume $\mathrm{H}_{1} \ldots \mathrm{H}_{4}$ are random oracles
- \mathcal{A} is a t-time, ε-advantage IND-ID-CCA2-adversary on Fullident, n is the blocksize of encryption
- \mathcal{A} has q_{E} extraction, q_{D} decryption and $q_{H i}$ hash queries (hash queries for oracle H_{i})
- There is an algorithm \mathcal{B} for solving BDH in the instantiation groups, such that
$\operatorname{time}(\mathcal{B}) \leq \mathrm{FO}_{\text {time }}\left(t, q_{H_{4}}, q_{H_{3}}\right)$
$\operatorname{Adv}(\mathcal{B}) \geq \frac{\mathrm{FO}_{a d v}\left(\frac{\varepsilon}{e\left(1+q_{E}+q_{D}\right)}, q_{H_{4}}, q_{H_{3}}, q_{D}\right)-2^{-n}}{q_{H_{2}}}$

BF: Security proof (3/5)

- The Fujisaki-Okamoto functions FO are defined as:
$\mathrm{FO}_{\text {time }}\left(t, q_{H_{4}}, q_{H_{3}}\right)=t+O\left(n\left(q_{H_{4}}+q_{H_{3}}\right)\right)$
$\mathrm{FO}_{a d v}\left(\varepsilon, q_{H_{4}}, q_{H_{3}}, q_{D}\right)=\frac{1}{2\left(q_{H_{4}}+q_{H_{3}}\right)}\left[(\varepsilon+1)\left(1-\frac{2}{q}\right)^{q_{D}}-1\right]$
- I2C reduction states that the adversary in IND-ID-CCA2-setting with its time- and advantage parameters has a time-parameter of the same order, and advantage $\frac{\varepsilon}{e\left(1+q_{E}+q_{D}\right)}$ against BasicPub ${ }^{\text {hy }}$ in IND-CCA2-setting

BF: Security proof (4/5)

- Scheme BasicPub: same as BasicIdent (Mao's version of BF-IBE), but public key is random, not generated from any ID
- Scheme BasicPubhy: same as FullIdent, but public key is random
- Sketch of proof of I2C
- \mathcal{B} against BasicPub ${ }^{\text {hy }}$ will use \mathcal{A} against FullIdent by
- Simulating the challenger as a random oracle for \mathcal{A} for extraction queries (there are no identities in BasicPub ${ }^{\text {hy }}$)
- Relaying and translating decryption queries to BasicPubhy challenger
- Relaying and translating (probabilistically) challenges and responses between \mathcal{A} and BasicPub ${ }^{\text {hy }}$ challenger

BF: Security proof (5/5)

- Fujisaki-Okamoto proof omitted
- BDH-reduction premise is that the adversary in OWEsetting with its time- and advantage parameters has a time-parameter of the same order, and advantage $\left(\varepsilon-2^{-n}\right) / q_{H_{2}}$ against BDH in the instantiated groups
- Proof of the BDH-reduction follows the same format as the I 2 C -reduction:
- \mathcal{B} simulates (as a random oracle) H_{2} to \mathcal{A} making sure to respond consistently to queries
- The input extractable group elements to \mathcal{B} will be translated as system parameters to $\mathcal{A}: \mathrm{aP}=P_{\text {pub }}, \mathrm{bP}=Q_{I D}, \mathrm{cP}=$ first part of the ciphertext C = <cP,R>

BF Security proof: BDH (1/6)

- Challenge phase
- Group descriptions and Weil pairing description are passed as is
- \mathcal{B} creates an oracle access to H_{2} ("keystream generator")
- BDH instances are translated to parts of the public key and the challenge ciphertext

BF Security proof: BDH (2/6)

- Challenge phase
- Since $P_{\text {pub }}=a P$, a is the secret master key
- Thus $d_{I D}=a Q_{I D}=a b P$
$-\mathcal{A}$ is assumed to return the "correct" plaintext, so we mark $M=R \oplus H_{2}\left(e\left(c P, d_{I D}\right)\right)=R \oplus H_{2}(D)$
- Also, D is the solution to the BDH problem, since

$$
\begin{aligned}
& e\left(c P, d_{I D}\right)=e\left(c P, a Q_{I D}\right)=e\left(c P, a Q_{I D}\right)= \\
& e\left(c P, a Q_{I D}\right)=e(c P, a b P)=e(P, a b c P)= \\
& e(P, P)^{a b c}
\end{aligned}
$$

BF Security proof: BDH (3/6)

- Oracle queries (\mathcal{A} will want to map the G_{2}-group element to a bitstring - which is supposed to happen with the private (unknown) key):
- The "hash" H_{2} is simulated by randomly producing an n-bit value
- The already given hashes are memorized in a list in case \mathcal{A} will ask them again, and for later guesses

BF Security proof: BDH (4/6)

- Guess
- \neq 's guess is as such, meaningless, since we do not know the hash pre-image (which would correspond to the abcP - or the solution of the BDH-problem)
- However, in order for \mathcal{A} to have computed the message from interactions with the challenger, the pre-image must be within the memorized list of hashes
- \mathcal{B} just randomly outputs one of these pre-images

BF Security proof: BDH (5/6)

- Time constraints:
- \mathscr{B} 's work is all about using \mathcal{A}, translating instances ($\mathrm{O}(1)$ work) and maintaining the oracle query list ($\mathrm{O}\left(\mathrm{q}_{\mathrm{D}}\right)$ work)
- $\mathscr{B}^{\prime} s$ work is the of same order as $\not A^{\prime}$'s => PPT-bounded
- Advantage:
- Selection of the public key and cipher text depends on the original challenger; \mathcal{B} outputs the "ciphertext" and oracle responses uniformly random
- If \mathcal{A} has advantage ε, then $P\left[M^{\prime}=M\right] \geq \varepsilon$

BF Security proof: BDH (6/6)

- Advantage:
- Let T be the event that D appears in the memorized list, and $\delta=P[T]$
- If \mathcal{A} outputs a correct answer and the D is not found in the list, then \mathcal{A} has acted independently of the hashes. In this case the guess is random: $P\left[M=M^{\prime} \mid \neg T\right] \leq 2^{-n}$
- From these:

$$
\begin{aligned}
& \varepsilon \leq P\left[M=M^{\prime}\right]=P\left[M=M^{\prime} \mid T\right] P[T]+P\left[M=M^{\prime} \mid \neg T\right] P[\neg T] \\
& \leq P[T]+P\left[M=M^{\prime} \mid \neg T\right] P[\neg T] \leq \delta+2^{-n}(1-\delta) \\
& \text { - Solving for } \delta: \delta>\delta\left(1-2^{-n}\right)>\varepsilon-2^{-n}
\end{aligned}
$$

- The advantage follows by dividing by the number of oracle queries

IB and dir PKI

	Directory	ldentity-based (Weil pairing)
TTPs	RA, CA, LDAP-rep.	PKG/TA
Operations needing interaction	System setup, fetching public key, fetching revoc.lists, ...	System setup
Key gen.	User	PKG/TA
Key length (128 bitentropy)	2540 bits (RSA) 256 bits (ECC)	$420-1270$ bits (I=6.2)
Revocation	Timed, or lists	Timed

Open problems

- Non-interactive key (/identity) revocation
- Random elements inclusion in the key generation
- Lessening the dependency on a single TA (some solutions, not completely satisfactory, exist, e.g. B\&F, Mao)
- Multi-party IB-PKI
- Ad hoc - IB-PKI

Conclusion

- Instantiable IB-PKI a new area:
- More efficient than conventional PKI
- Important open problems
- Elliptic-curve algebra "involved"
- Backed by long history of mathematical research
- New applications bound to emerge
- Promising applications in ad hoc peering networks

