Strong and provable secure ElGamal type signatures Chapter 16.3

Santeri.Saarinen@hut.fi

T-79.5502 Advanced Course in Cryptography 1

Overview

- El Gamal cryptosystem and El Gamal type signatures
- Terms used
- Forking reduction
- Discussion on the results
- Heavy-Row reduction
- Conclusion

El Gamal cryptosystem

- Public key system based on discrete logarithm problem
- Prime p and primitive element α
- Private key is a and $\beta = \alpha$ a mod p
- Random number k, message x
- E: $y_1 = \alpha^k \mod p$, $y_2 = x^*\beta^k \mod p$
- D: $y_2 * (y_1^a)^{-1} \mod p$

El Gamal example - encryption

- Suppose: p = 13, $\alpha = 2$, a = 3, $\beta = 2^3 \mod 13 = 8$, message x = 11, random k = 5
- Public key: $\{p, \alpha, \beta\} = \{13, 2, 8\}$
- Encryption: $y_1 = 2^5 \mod 13 = 6$ $y_2 = 11 * 8^5 \mod 13 = 10$
- Ciphertext: (6, 10)

El Gamal example - decryption

- Public key: $\{p, \alpha, \beta\} = \{13, 2, 8\}$
- Private key: a = 3
- Ciphertext: $y = \{6, 10\}$
- $x = 10 * (6^3)^{-1} \mod 13 = 11$

El Gamal signature scheme

•
$$sig(m, k) = (y_1, y_2)$$

 $y_1 = \alpha^k \mod p$
 $y_2 = (m - a y_1) (k^{-1}) \mod (p - 1)$

•
$$\operatorname{ver}(\mathbf{m}, \mathbf{y}_1, \mathbf{y}_2) \Leftrightarrow$$

 $\mathbf{y}_1^{\mathbf{y}_2} * \beta^{\mathbf{y}_1} = \alpha^{\mathbf{m}} \mod p$

El Gamal signature example

- Public key: $\{p, \alpha, \beta\} = \{13, 2, 8\}$
- Private key: a = 3
- m = 11, k = 5
- sig(11, 5): $y_1 = \alpha^k \mod p = 6$ $y_2 = (m - a y_1) (k^{-1}) \mod (p - 1) = 1$

El Gamal Signature example cont.

- verify: $y_1^{y_2} * \beta^{y_1} = \alpha^m \mod p$ $6^1 * 8^6 = 2^{11} \mod 13$ $7 = 7 \Leftrightarrow \text{true}$
- Digital Signature Algorithm (DSA) and Schnorr are variants of El Gamal.

Triplet Signature Scheme

- Signature of message M is triplet (r,e,s)
- r is called *commitment*, committing epheremal integer l. Constructed for example: $r = g^{1} \mod p$
- e = H(M, r), where H() is a hash function
- s is called signature, a linear function of (r, l, M, H(), signing key)

Secure Signature Scheme

- Signature scheme is denoted by (*Gen, Sign, Verify*)
- *Gen* generates private and public key
- *Sign* signs message and *Verify* verifies
- Signature scheme is (*t*(*k*), *Adv*(*k*)), if there exists no forger able to forge a signature for all sufficiently large k.

Reduction

- Transformation from t(k), Adv(k) to t'(k), Adv'(k), which is corresponding solution to a hard problem (e.g. discrete logarithm)
- Main aim to make solution to a hard problem "too easy".
- Similarity between between the two efforts depends on the efficency of the reduction

Non-adaptive attack

- A triplet version of El Gamal is used
- No signing training needed
- Simon operates as simulated random oracle for H() queries

First lot of runs

- 1/Adv(k) runs needed by Malice
- Simon maintains list of e = H(M, r) delivered to Malice
- When Malice outputs a forgery, he has queried the corresponding e

Second lot of runs

- Malice re-runs 1/Adv(k) times
- Simon resets his RO-answers
- Because on birthday-paradox, two signature pairs (M, (r,e,s)) and (M', (r',e',s')) satisfy (M,r) = (M',r') after number of tries

Extraction of discrete logarithm

 $y^{r}r^{s} = g^{e}(mod p), y^{r}r^{s'} = g^{e'}(mod p)$ $\Leftrightarrow xr + ls = e (mod q), xr + ls' = e' (mod q)$ $\Leftrightarrow l = (e - e')/(s - s') (mod q)$ x = (e - ls)/r (mod q)

Simon does not care of Malice's method, but is able to extract discrete logarithm.

Reduction results

- Simon's advantage Adv'(k) = $1 / (q_h^{0.5})$
- Simon's time cost t' = 2(t+q_h)/Adv(k)
 t is the time Malice needs for a forgery
- This works only if Malice does not care he is fooled

Adaptive chosen-message attack

- Simon simulates also signing of the messages, but does not posses the signing key. Though signature can be verified!
- For signing query, Simon returns:
 r = g^uy^v (mod p)
 s = -rv⁻¹ (mod p 1)
 e = -ruv⁻¹ (mod p 1)

, where u and v are random integers

ACM-attack results

 $t'(k) = 2 * (t(k) + q_H * \tau) + OB(q_s * k^3)/Adv(k)$ Adv'(k) = $q_H^{-0.5}$

- q_s is number of signing queries
- q_H is number of hash-queries
- τ is time consumed in answering a query

Discussion

- The proof suggests that vulnerable parts of this kind of signature are discrete logarithm and the hash-function
- Reduction should run $q_H^{0,5}$ times, which makes the total time $O(q_H^{3/2} / Adv)$
- Mao suggests 2^{50} hash queries => O(2^{75} / Adv)

Heavy-Row technique

- Created for zero-knowledge identification, but applies to El Gamal also
- Matrix-based approach featuring Malice and Simon
- Two forged signatures lead to contradiction as in forking technique.

Conclusion

- It is possible to reduct from forgering a triplet El Gamal signature to solving discrete logarithm in constant time.
- Using Simon the Simulator offers a good tool to build the reduction.