Strong and provable secure ElGamal type signatures Chapter 16.3

Santeri.Saarinen@hut.fi

Overview

- El Gamal cryptosystem and El Gamal type signatures
- Terms used
- Forking reduction
- Discussion on the results
- Heavy-Row reduction
- Conclusion

El Gamal cryptosystem

- Public key system based on discrete logarithm problem
- Prime p and primitive element α
- Private key is a and $\beta=\alpha^{a} \bmod p$
- Random number k , message x
- E: $y_{1}=\alpha^{k} \bmod p, y_{2}=x^{*} \beta^{k} \bmod p$
- D: $y_{2} *\left(y_{1}\right)^{-1} \bmod p$

El Gamal example - encryption

- Suppose: $p=13, \alpha=2, a=3$, $\beta=2^{3} \bmod 13=8$, message $\mathrm{x}=11$, random $\mathrm{k}=5$
- Public key: $\{p, \alpha, \beta\}=\{13,2,8\}$
- Encryption: $y_{1}=2^{5} \bmod 13=6$ $\mathrm{y} 2=11 * 8^{5} \bmod 13=10$
- Ciphertext: $(6,10)$

El Gamal example - decryption

- Public key: $\{p, \alpha, \beta\}=\{13,2,8\}$
- Private key: $\mathrm{a}=3$
- Ciphertext: $y=\{6,10\}$
- $\mathrm{x}=10 *\left(6^{3}\right)^{-1} \bmod 13=11$

El Gamal signature scheme

- $\operatorname{sig}(\mathrm{m}, \mathrm{k})=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$
$y_{1}=\alpha^{k} \bmod p$
$\mathrm{y}_{2}=\left(\mathrm{m}-\mathrm{a}_{1}\right)\left(\mathrm{k}^{-1}\right) \bmod (\mathrm{p}-1)$
- $\operatorname{ver}\left(\mathrm{m}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \Leftrightarrow$
$y_{1}{ }^{\mathrm{y} 2} * \beta^{\mathrm{y} 1}=\alpha^{\mathrm{m}} \bmod \mathrm{p}$

El Gamal signature example

- Public key: $\{p, \alpha, \beta\}=\{13,2,8\}$
- Private key: $\mathrm{a}=3$
- $\mathrm{m}=11, \mathrm{k}=5$
- $\operatorname{sig}(11,5)$:

$$
y_{1}=\alpha^{\mathrm{k}} \bmod \mathrm{p}=6
$$

$$
\mathrm{y}_{2}=\left(\mathrm{m}-\mathrm{a} \mathrm{y}_{1}\right)\left(\mathrm{k}^{-1}\right) \bmod (\mathrm{p}-1)=1
$$

El Gamal Signature example cont.

- verify:
$\mathrm{y}_{1}{ }^{\mathrm{y} 2} * \beta^{\mathrm{y} 1}=\alpha^{\mathrm{m}} \bmod \mathrm{p}$
$6^{1 *} * 8^{6}=2^{11} \bmod 13$
$7=7 \Leftrightarrow$ true
- Digital Signature Algorithm (DSA) and Schnorr are variants of El Gamal.

Triplet Signature Scheme

- Signature of message M is triplet (r,e,s)
- r is called commitment, committing epheremal integer 1 . Constructed for example: $\mathrm{r}=\mathrm{g}^{1} \bmod \mathrm{p}$
- $\mathrm{e}=\mathrm{H}(\mathrm{M}, \mathrm{r})$, where H() is a hash function
- s is called signature, a linear function of ($\mathrm{r}, \mathrm{l}, \mathrm{M}, \mathrm{H}($), signing key)

Secure Signature Scheme

- Signature scheme is denoted by (Gen, Sign, Verify)
- Gen generates private and public key
- Sign signs message and Verify verifies
- Signature scheme is $(t(k), \operatorname{Adv}(k))$, if there exists no forger able to forge a signature for all sufficiently large k .

Reduction

- Transformation from $t(k), \operatorname{Adv}(k)$ to $t^{\prime}(k)$, $A d v^{\prime}(k)$, which is corresponding solution to a hard problem (e.g. discrete logarithm)
- Main aim to make solution to a hard problem "too easy".
- Similarity between between the two efforts depends on the efficency of the reduction

Setup

Signature scheme and public key

Non-adaptive attack

- A triplet version of El Gamal is used
- No signing training needed
- Simon operates as simulated random oracle for H() queries

First lot of runs

- $1 / A d v(k)$ runs needed by Malice
- Simon maintains list of $\mathrm{e}=\mathrm{H}(\mathrm{M}, \mathrm{r})$ delivered to Malice
- When Malice outputs a forgery, he has queried the corresponding e

Second lot of runs

- Malice re-runs $1 / A d v(k)$ times
- Simon resets his RO-answers
- Because on birthday-paradox, two signature pairs (M, (r,e,s)) and ($\left.M^{\prime},\left(r^{\prime}, e^{\prime}, s^{\prime}\right)\right)$ satisfy $(M, r)=\left(M^{\prime}, r^{\prime}\right)$ after number of tries

Extraction of discrete logarithm

$$
\begin{aligned}
& \left.y^{\mathrm{r} \mathrm{r}^{s}}=\mathrm{g}^{\mathrm{e}}(\bmod \mathrm{p}), \mathrm{y}^{\mathrm{r} \mathrm{r}^{s^{\prime}}=\mathrm{g}^{\mathrm{e}^{\prime}}(\bmod \mathrm{p}}\right) \\
\Leftrightarrow & \mathrm{xr}+\mathrm{ls}=\mathrm{e}(\bmod q), \mathrm{xr}+1 \mathrm{~s}^{\prime}=\mathrm{e}^{\prime}(\bmod q) \\
\Leftrightarrow & 1=\left(\mathrm{e}-\mathrm{e}^{\prime}\right) /\left(\mathrm{s}-\mathrm{s}^{\prime}\right)(\bmod q) \\
\quad & x=(\mathrm{e}-1 \mathrm{~s}) / \mathrm{r}(\bmod q)
\end{aligned}
$$

Simon does not care of Malice's method, but is able to extract discrete logarithm.

Reduction results

- Simon's advantage Adv ' $(\mathrm{k})=1 /\left(\mathrm{q}_{\mathrm{h}}{ }^{0,5}\right)$
- Simon's time cost $\mathrm{t}^{\prime}=2\left(\mathrm{t}+\mathrm{q}_{\mathrm{h}}\right) / \operatorname{Adv}(\mathrm{k})$ t is the time Malice needs for a forgery
- This works only if Malice does not care he is fooled

Adaptive chosen-message attack

- Simon simulates also signing of the messages, but does not posses the signing key. Though signature can be verified!
- For signing query, Simon returns:
$\mathrm{r}=\mathrm{g}^{\mathrm{u}} \mathrm{y}^{\mathrm{v}}(\bmod \mathrm{p})$
$\mathrm{s}=-\mathrm{rv}^{-1}(\bmod \mathrm{p}-1)$
$\mathrm{e}=-\operatorname{ruv}^{-1}(\bmod \mathrm{p}-1)$
, where u and v are random integers

ACM-attack results

$\mathrm{t}^{\prime}(\mathrm{k})=2 *\left(\mathrm{t}(\mathrm{k})+\mathrm{q}_{\mathrm{H}}{ }^{*} \tau\right)+\mathrm{OB}\left(\mathrm{q}_{\mathrm{s}}{ }^{*} \mathrm{k}^{3}\right) / \operatorname{Adv}(\mathrm{k})$
$\operatorname{Adv}^{\prime}(\mathrm{k})=\mathrm{q}_{\mathrm{H}}{ }^{-0,5}$

- q_{s} is number of signing queries
- q_{H} is number of hash-queries
- τ is time consumed in answering a query

Discussion

- The proof suggests that vulnerable parts of this kind of signature are discrete logarithm and the hash-function
- Reduction should run $\mathrm{q}_{\mathrm{H}}{ }^{0,5}$ times, which makes the total time $\mathrm{O}\left(\mathrm{q}_{\mathrm{H}}^{3 / 2} / \mathrm{Adv}\right)$
- Mao suggests 2^{50} hash queries
$=>\mathrm{O}\left(2^{75} / \mathrm{Adv}\right)$

Heavy-Row technique

- Created for zero-knowledge identification, but applies to El Gamal also
- Matrix-based approach featuring Malice and Simon
- Two forged signatures lead to contradiction as in forking technique.

Conclusion

- It is possible to reduct from forgering a triplet El Gamal signature to solving discrete logarithm in constant time.
- Using Simon the Simulator offers a good tool to build the reduction.

