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f-OAEP vs. Cramer-Shoup 

● Cramer-Shoup has efficient ”reduction to 
contradiction”
– vs. square reduction of f-OAEP

● The intractability assumptions are minimal – 
namely: DDH
– vs. ROM (there exists none) + RSA Assumption 8.3

● Efficient reduction and weak intractability 
assumptions are desirable properties



DDH assumption

● In group G, given (g,ga,gb,gc).

– There is no polynomially bounded algorithm to answer 
question ”Is ab = c (mod #G)?” with nonneglible Adv.

– Means that if you have polynomially bounded time, your 
answers are about 50% right.

● In here (later):

– #G=q, 

–

● Q: is r
1
 = r

2
 (mod q)?

– ( iff w*r
1
=w*r

2
 and gcd(w,q)=1 )

● DDH implies DL -problem: ”find i such that gi=x (mod q)” is hard

g=g1, g
a=g 2=g1

w , g b=u1=g1
r 1 , g c=u2=g 2

r2=g 1
w r2

g 1, g 2, u1, u2 =  g1, g 1
w , g1

r1 , g1
wr 2



Algorithm – Key Parameters

● G abelian group of large prime order q

– Every                     is generator of G (Corollary 5.3)
● Two random elements

● Five random integers 

● Three elements

● A cryptographic hash function

●                                is public key 

●                           is private key

– Because public key is made from private by exponentiating 
known g

1
, g

2
, private key is secure due to DL assumption, 

which is weaker than DDH.

c g1
x1 g 2

x2 , d  g 1
y1 g 2

y2 , h g 1
z

x1, x2, y1, y2, z∈[0,q )

g1, g 2∈U G

H :G3 [0,q )

g1, g 2, c , d , h , H 

x1, x2, y1, y 2, z 

g∈G≠1



Algorithm – Key Setup

● Pick two random

● Pick five random integers 

● Compute 

● Choose a cryptographic hash function

●                                is public key 

●                           is private key

c g1
x1 g 2

x2 , d  g 1
y1 g 2

y2 , h g 1
z

x1, x2, y1, y2, z∈[0,q )

g1, g 2∈U G

H :G 3 [0,q )

g1, g 2, c , d , h , H 

x1, x2, y1, y 2, z 



Algorithm – Encryption & Decryption

● Bob encrypts message m by

– Pick random 

–

– (u
1
, u

2
, e, v) is the encrypted message

● Alice performs decryption of (u
1
, u

2
, e, v) by:

–

– Output:
●                  , if 
● REJECT otherwise

u1
x1 y1 u2

x2 y2=v

r∈[ 0, q )

 H u1, u2, e

u1 g1
r , u2 g2

r , e hr m , H u1, u2, e , vcr d r

m e/u1
z



Algorithm – Encryption & Decryption

● Bob: 

● Alice:                   , if 

● If message is not altered en route to Alice, message is not rejected

–  

–

– Process is ok

u1
x1 y1 u2

x2 y2 =u1
x1u2

x1 u1
y1 u2

y2=g1
rx 1 g 2

rx1 g1
r y1 g 2

r y2=
g1

x1 g 2
x1rg1

y1 g 2
y2r=cr d rα= v

u1 g1
r , u2 g2

r , e hr m , H u1, u2, e , vcr d r

u1
x1 y1 u2

x2 y2=v

e /u1
z=

hr m

u1
z =g1

rz m

g1
rz =m

m e/u1
z



Algorithm – Notions

● Part (u
1
, e) is the very same of semantically 

secure ElGamal cryptosystem
● Therefore IND-CPA secure if the DDH 

assumption holds by Theorem 14.2
● Hash function helps to provide IND-CCA2 by 

offering data-integrity validating step



Algorithm - Performance

● Public key consists of five elements in G
– vs. two of ElGamal

● The size of ciphertext is quadruple
– Twice that of ElGamal

● Encryption requires 4 and decryption 2 
exponentiations
– Increased from two of encryption and one of 

decryption of ElGamal



Proof of security

● Proof is (linear) reduction to contradiction
– Reducing a hard problem supported by the underlying 

intractability assumption to an alleged IND-CCA2 
attack

● Hard problem is the DDH problem
● If Cramer-Shoup is not secure in IND-CCA2 

mode, then DDH -problem can be solved

● D is the set of Diffie-Hellman quadrubles
– All quadrubles 

 for which r
1
 = r

2
 (mod q)

g1, g 2, u1, u2 = g1, g 1
w , g1

r1 , g 1
wr 2



Proof of security

● Suppose an attacker A can break Cramer-Shoup

● Then Simon, given (g
1
, g

2
, u

1
, u

2
), can construct challenge 

ciphertext C*, which encrypts one of messages m
0
, m

1
 given by A 

and asks A to release its attacking advantage

– If (g
1
, g

2
, u

1
, u

2
) ∈ D, C* is valid Cramer-Shoup ciphertext

● In this case, A can use its attacking advantage

– If not, then message m
b
 is encrypted in Shannon's information-

theoretically secure sense and thus can not be deciphered

● A can not have any advantage whatsoever!

● If A has about 50% right, quadruble is probably not in D



Proof of security  – setup

● First, (g
1
, g

2
, u

1
, u

2
) is given to Simon

● He picks x
1
, x

2
, y

1
, y

2
, z

1
, z

2
 from [0,q)

● And computes 

● Implicit private key is (x
1
, x

2
, y

1
, y

2
, z

1
, z

2
)

– z is not explicitly expressed, but is uniquely determined since 

– It is possible to cipher and decipher with this impicit 
information (z

1
, z

2
)

g 2=g1
w , g1

z1 g 2
z 2=g1

z1 g1
w z2=g 1

z 1w z 2=g1
z

c g1
x1 g 2

x2 , d  g1
y1 g 2

y2 , h g 1
z 1 g 2

z 2



Proof of security – the challenge ciphertext

● Simon gets m
0
 and m

1
 from A and tosses a fair coin and gets b.

● He computes  

● The challenge ciphertext is C*=(u
1
, u

2
, e, v)

– ” But usually e=hrm
b
!?? ”

– This is the trick!

● If (g
1
, g

2
, u

1
, u

2
) ∈D, there exist r such that u

1
=g

1
r, u

2
=g

2
r 

–

– Simulated encryption of (g
1
, g

2
, u

1
, u

2
) is valid

– So A should know b with positive Adv

u1
z 1u2

z2=g 1
rz1g 2

rz2=g 1
z1 g2

z2r=hr

e=u1
z 1u 2

z2 mb ,=H u1,u 2,e , v=u1
x1y1u2

x2y2 



Proof of security – the challenge ciphertext

● Else as far as A is considered, C* could be from either one.

● Let's analyze what A can calculate and form equations

● Matrix on the left hand side is invertible

–

– So two different implicit private key information (z
1
, z

2
) can be 

found, one for m
0
 and one for m

1
, but both are equally likely!

g 1
z 1 g 2

z 2=h

g 1
z1 r1 g2

z2 r 2=e /mi

for each mi

 1 logg 1
g 2

r1 r2 log g1
g2
z1

z2
= log g1

h

log g1
e/m0  mod q 

 1 log g1
g2

r1 r 2log g1
g2z1

z 2
= log g1

h

logg1
e/m1  mod q 

Det M= r2− r1 logg 1
g 2, r1≠r2, g 2≠g1 logg 1

g 2≠0





Proof of security – the challenge ciphertext

● C* encrypts m
b
 in Shannon's information-theoretical security 

sense

– 2 cipher texts, 2 plain texts, equal probability both

● A does not have any advantage so m
b
 is absolutely secured

● Q: (g
1
, g

2
, u

1
, u

2
) ∈D ?

● Simon answers: YES if A was right, NO if A was not.

– This is how he gets same Adv as A when Q is true

– Then Simon's total Advantage is a half of A's Advantage (see 
lecture 6, page 24)



Theorem 15.1

● Let                                 be a public key for the Cramer-Shoup 
encryption scheme in a group G of a prime order q, where
and          . If (g

1
, g

2
, U

1
, U

2
) D then the probability of 

successfully solving the following problem is bounded by    . 

– Input: public key

– Output: V st.                              is a valid ciphertext deemed by 
the key owner

● Note: in here, the problem of finding correct ciphertext is 
simplified as to give V from the three other. As all other are inputs 
of the hash function H forming  and V is not, the easiest way is to 
deduce V from the other three.

g1, g 2, c , d , h , H  , U 1, U 2, E ∈G 3

U 1, U 2, E , V 

g1, g 2, c , d , h , H 

1
q

g 2≠1
g1≠1



Theorem 15.1

● What can be known from the input?

– V must satisfy

– From the construction of public key components c and d

– Other information of the                           is not available.

  1 0 w 0
0 1 0 w
r1 r1 w r2 w r2 x1

y1

x2

y2

= logg 1
c

logg 1
d

logg 1
V mod q 15.3.9

U 1
x1y1U 2

x2 y2=V

g1
x1 g 1

w x2=c , g1
y1 g1

w y2=d
x1, x2, y1, y2



Theorem 15.1 - continued

● After Gaussian elimination matrix has the following form:

●  

● Thus (15.3.9) has (non-unique) solutions for each of V.

● So A cannot set the V unambiguously!

– Every element of G (q elements) can be V fulfilling everything 
which A knows of the secret key!

– Only one is correct, thus    probability of correct V

1 0 w 0
0 1 0 w
0 0 w r 2− r1 w r2− r1


Det M ≠0, because r1− r2≠0, w≠0

1
q



● We have not considered the cryptanalysis training course!

● When Simon gets C = (U
1
, U

2
, E, V) from A, Simon will conduct 

the data-integrity validating procedure, checking if 

● If message is not rejected, Simon computes

● 3 different cases:

– C for which (g
1
, g

2
, U

1
, U

2
) ∈D

– C such that it is rejected

– C for which (g
1
, g

2
, U

1
, U

2
) D and which is not rejected

Proof of security – cryptanalysis training courses

m=E /U 1
z1U 2

z2

u1
x1 y1 u2

x2 y2=v



● What if A send ciphertext C for which (g
1
, g

2
, U

1
, U

2
) ∈D ?

● So there exist R st.

● Simulated decryption is correct!

● And no new information is revealed from z
1 
and z

2

– Because triplet (U
1
,U

2
,hR) connects them similarly to (g

1
,g

2
,h), 

only the R exponent is more.
● No use of sending this kind of messages

Proof of security – cryptanalysis training courses

g 1
R=U 1, g 2

R=U 2  U 1
z 1U 2

z 2=g1
R z1 g 2

R z2=g 1
z 1 g 2

z 2R=hR



Proof of security – cryptanalysis training courses

● What if A sends C such that it is rejected?

– If C is rejected, A knows that 

– If three of x
1
, y

1
, x

2
, y

2
 are known, still the last one can't be 

easily determined due to DL assumption.

● What if A sends C for which (g
1
, g

2
, U

1
, U

2
) D and which is not 

rejected?

– Due to Theorem 15.1, this is with probability    !

– A could as well guess correctly anything since G is of size q

● All in all, no profit from the cryptanalysis training courses!

u1
x1y1u2

x2 y2≠v

1
q


