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f-OAEP vs. Cramer-Shoup

* Cramer-Shoup has efficient ’reduction to
contradiction”

— vs. square reduction of f-OAEP

* The intractability assumptions are minimal —
namely: DDH

- vs. ROM (there exists none) + RSA Assumption 8.3

e Efficient reduction and weak intractability
assumptions are desirable properties



DDH assumption

* In group G, given (g.,g°,g°,2°).

— There 1s no polynomially bounded algorithm to answer
question “’Is ab = ¢ (mod #G)?”” with nonneglible Adv.

— Means that if you have polynomially bounded time, your
answers are about 50% right.

* In here (later):

wr,

- #G=q, g=g,g"=g,=¢g/ ¢"=u,=¢), g"=u,= g7 =g,
~ (g1, g uy uy) = (81 81, 815 &)
e Q:1s r,=r, (mod q)?
- (1t w¥r =w*r, and ged(w,q)=1)
* DDH implies DL -problem: find i such that g=x (mod q)” is hard



Algorithm — Key Parameters

G abelian group of large prime order q
- Every ge€G#1 1s generator of G (Corollary 5.3)
Two random elements g, £,€,G
Five random integers X, X, ¥, ¥, 2€[0,q)
Three elements c« g,'gy,d<—g,'gy’, hg]
A cryptographic hash function H -G’ — [0,9)
(g1,gz,c’ d,h,H) 1spublic key
(x, x, ¥, ¥,2) is private key

— Because public key 1s made from private by exponentiating
known g , g , private key is secure due to DL assumption,

which 1s weaker than DDH.



Algorithm — Key Setup

Pick two random &, 8,Sy G

Pick five random integers x, x, y, ¥, z€[0,q)
Compute c«g\'gy,dg1'gy, he—gi

Choose a cryptographic hash function H:G —[0,q)
(g,.8,c,d,h,H) is public key

(x, x, ¥, ¥, 2) is private key



Algorithm — Encryption & Decryption

* Bob encrypts message m by
- Pick random r€[0,q)
T ou g ue gy e—h'm o~ H(u u, e),ve—c'd”
- (u,, u, €, v) 1s the encrypted message
e Alice performs decryption of (u,, u,, €, v) by:
— «—H(u, u,e)
— QOutput:
e me—elu’ if AR LI L L,

2
e REJECT otherwise



Algorithm — Encryption & Decryption

* Bob: u,—gl,u,—~g,,e—h'm,a—H(u u,e),vecd”

e Alice: m(—e/ui ,if uiclerlo(u;chryz(x:V

* [f message 1s not altered en route to Alice, message 1s not rejected

X ty,x X, ty,x X, & Y, xXx__ rx, Xy Iy _ry,&__

- — .. X
u, u, —U, U, uy U, =4, 8, & &, —
X1 _X1\r Vi Vo\rx_ _r jJro __
(glgz)(g1g2) =c'd"=v
h'm . m

z 1 rz

U 81

" elu= =m

— Process 1s ok



Algorithm — Notions

e Part (u, ¢) 1s the very same of semantically
secure ElGamal cryptosystem

e Therefore IND-CPA secure 1f the DDH
assumption holds by Theorem 14.2

* Hash function helps to provide IND-CCA2 by
offering data-integrity validating step




Algorithm - Performance

* Public key consists of five elements in G
- vs. two of ElGamal

* The size of ciphertext 1s quadruple
— Twice that of ElGamal

* Encryption requires 4 and decryption 2
exponentiations

— Increased from two of encryption and one of
decryption of ElGamal



Proof of security

* Proof is (linear) reduction to contradiction

— Reducing a hard problem supported by the underlying
intractability assumption to an alleged IND-CCA2
attack

* Hard problem 1s the DDH problem

* If Cramer-Shoup is not secure in IND-CCA2
mode, then DDH -problem can be solved

* D is the set of Diffie-Hellman quadrubles

- All quadrubles (g, g, u, u,)=(g,. g\, &' g1 )
for which r, =1, (mod q)



Proof of security

* Suppose an attacker 4 can break Cramer-Shoup

e Then Simon, given (g, g, u,, u,), can construct challenge
ciphertext C*, which encrypts one of messages m , m given by 4

and asks 4 to release its attacking advantage
- If (g, g,, u, u,) € D, C* is valid Cramer-Shoup ciphertext

* In this case, 4 can use its attacking advantage

- If not, then message m, 1s encrypted in Shannon's information-
theoretically secure sense and thus can not be deciphered

® 7 can not have any advantage whatsoever!

* If 4 has about 50% right, quadruble is probably not in D



Proof of security — setup

First, (g, g,, u,, u,) 1s given to Simon

He picks X, X, ¥,,¥,, Z,, z, from [0,q)

And computes ¢ g1'8,, d—gi'gy . h—g|'gy
Implicit private key 18 (X, X,, ¥, ¥, Z,, Z,)

— z1s not explicitly expressed, but 1s uniquely determined since

g,=g) glery=g'gl =g\ =g
— It 1s possible to cipher and decipher with this impicit
information (z, z,)



Proof of security — the challenge ciphertext

Simon gets m, and m from A and tosses a fair coin and gets b.

X+ +
He computes e=uj'uym,, «=H (u, u,e), v=uy" ""“uy" """

The challenge ciphertext is C*=(u, u,, €, V)
— 7 But usually e=h'm !7?7”
— This 1s the trick!
If (g, g, u,u,) €D, there exist r such thatu =g ", u,=g '

- Ul ”2 (g1> l(gz) zz(gllgzz) =h'

- Simulated encryption of (g,, g,, u,, u,) 1s valid

1’2

— So 4 should know b with positive Adv



Proof of security — the challenge ciphertext

* Else as far as 4 1s considered, C* could be from either one.

* Let's analyze what 4 can calculate and form equations

. 1 log, g, _| log,h \mod q|
gl gy= h r rzlogg1 g, log&(e/mo)
g g =elm.
for each m, 1 log, g, log,,, / \mod q|
7 7'210gg1 g,[\Z2 lOggl (e/m))

e Matrix on the left hand side i1s invertible
_ Det M=(r,— rl)loggng, r#r, 8,78, log, g,#0

— So two different implicit private key information (z , z,) can be

1° 2
found, one for m and one for m , but both are equally likely!



Proof of security — the challenge ciphertext

C* encrypts m 1n Shannon's information-theoretical security

sense
— 2 cipher texts, 2 plain texts, equal probability both

A does not have any advantage so m 1s absolutely secured

Q: (g, g, u,u,) €D ?
Simon answers: YES 1f 2 was right, NO 1f 2 was not.

— This 1s how he gets same Adv as 4 when Q 1s true

— Then Simon's total Advantage is a half of A4's Advantage (see
lecture 6, page 24)



Theorem 15.1

e Let (g, 8,c¢,d.h,H) beapublic key for the Cramer-Shoup
encryption scheme in a group G of a prime order g, where £,#1

and £,71.If (g, g,, U,, U)) ¢ D then the probability of
successfully solving the following problem 1s bounded by 7 -

— Input: pubhckey(glj g, c,d,h, H), <U1, U, E)EG

- Output: Vst. (U, U, E, V') isavalid ciphertext deemed by
the key owner

* Note: in here, the problem of finding correct ciphertext is
simplified as to give V from the three other. As all other are inputs

of the hash function H forming o and V is not, the easiest way is to
deduce V from the other three.



Theorem 15.1

* What can be known from the input?

- Vmust satisfy U7 U "=y

— From the construction of public key components ¢ and d

g1'g1'=c, g'g '=d
— Other information of the (x 1, X2, V1. ¥,) is not available.

X1

1 0 w 0 log, c
- |0 1 0 w o |[71]= log, d (mod q) (153.9)
r, T Wr, wr,«x 2 log, V

V2



Theorem 15.1 - continued

After Gaussian elimination matrix has the following form:

1 0 w 0
0 1 0 w
0 0 w(r,—r,) w(r,—r«

Det M #0, because r,— r,#0, w#0
Thus (15.3.9) has (non-unique) solutions for each of V.

So 4 cannot set the V unambiguously!

— Every element of G (q elements) can be V fulfilling everything
which A knows of the secret key!

— Only one 1s correct, thus é probability of correct V



Proof of security — cryptanalysis training courses

We have not considered the cryptanalysis training course!

When Simon gets C = (U,, U, E, V) from 4, Simon will conduct

the data-integrity validating procedure, checking if u," " u;"""*“=v

If message is not rejected, Simon computes m=E/(U;'U?)
3 different cases:
- C for which (g, g,, U, U) €D
— C such that it 1s rejected
- Cfor which (g, g,, U,, U,) ¢ D and which is not rejected



Proof of security — cryptanalysis training courses

What if 4 send ciphertext C for which (g, g,, U, U)) €D ?

So there exist R st.
g1=U,g,=U, - UlU;=g"g,"=(g]'g?)' ="
Simulated decryption is correct!

And no new information is revealed from z, and z,

— Because triplet (U ,U_,h®) connects them similarly to (g g, .h),
only the R exponent 1s more.

No use of sending this kind of messages



Proof of security — cryptanalysis training courses

* What 1f 4 sends C such that it 1s rejected?
Xty x2+ Y, X ¢V

- If Cis rejected, A knows that %}’

- Ifthree of x , y , x , y_ are known, still the last one can't be
casily determined due to DL assumption.

e What if 4 sends C for which (g, g,, U, U)) ¢ D and which is not
rejected?

- Due to Theorem 15.1, this is with probability _ !

— 4 could as well guess correctly anything since G is of size q

* Allin all, no profit from the cryptanalysis training courses!



