The Cramer-Shoup Public-Key Cryptosystem

Tuesday 25.4.2006 Aleksi Hänninen Based on a book: Wenbo Mao: Modern cryptography : theory and practice Upper Saddle River, NJ : Prentice Hall PTR, cop. 2004 ISBN: 0-13-066943-1

f-OAEP vs. Cramer-Shoup

- Cramer-Shoup has efficient "reduction to contradiction"
 - vs. square reduction of f-OAEP
- The intractability assumptions are minimal namely: DDH
 - vs. ROM (there exists none) + RSA Assumption 8.3
- Efficient reduction and weak intractability assumptions are desirable properties

DDH assumption

- In group G, given (g,g^a,g^b,g^c) .
 - There is no polynomially bounded algorithm to answer question "Is ab = c (mod #G)?" with nonneglible Adv.
 - Means that if you have polynomially bounded time, your answers are about 50% right.
- In here (later):

- #G=q,
$$g=g_{1,}g^{a}=g_{2}=g_{1}^{w}$$
, $g^{b}=u_{1}=g_{1}^{r_{1}}$, $g^{c}=u_{2}=g_{2}^{r_{2}}=g_{1}^{wr_{2}}$

$$- (g_{1,} g_{2,} u_{1,} u_{2}) = (g_{1,} g_{1}^{w}, g_{1}^{r_{1}}, g_{1}^{wr_{2}})$$

• Q: is
$$r_1 = r_2 \pmod{q}$$
?

- (iff w*r₁=w*r₂ and gcd(w,q)=1)

• DDH implies DL -problem: "find i such that $g^i = x \pmod{q}$ " is hard

Algorithm – Key Parameters

• G abelian group of large prime order q

- Every $g \in G \neq 1$ is generator of G (Corollary 5.3)

- Two random elements $g_{1,}g_2 \in_U G$
- Five random integers $x_{1,}x_{2,}y_{1,}y_{2,}z \in [0,q]$
- Three elements $c \leftarrow g_1^{x_1} g_2^{x_2}$, $d \leftarrow g_1^{y_1} g_2^{y_2}$, $h \leftarrow g_1^z$
- A cryptographic hash function $H: G^3 \rightarrow [0,q)$
- $(g_{1}, g_{2}, c, d, h, H)$ is public key
- $(x_{1}, x_{2}, y_{1}, y_{2}, z)$ is private key
 - Because public key is made from private by exponentiating known g₁, g₂, private key is secure due to DL assumption, which is weaker than DDH.

Algorithm – Key Setup

- Pick two random $g_{1,g_2} \in_U G$
- Pick five random integers $x_{1,}x_{2,}y_{1,}y_{2,}z \in [0,q]$
- Compute $c \leftarrow g_1^{x_1}g_2^{x_2}$, $d \leftarrow g_1^{y_1}g_2^{y_2}$, $h \leftarrow g_1^z$
- Choose a cryptographic hash function $H: G^3 \rightarrow [0,q)$
- $(g_{1}, g_{2}, c, d, h, H)$ is public key
- $(x_{1,}x_{2,}y_{1,}y_{2,}z)$ is private key

Algorithm – Encryption & Decryption

- Bob encrypts message m by
 - Pick random $r \in [0,q)$
 - $\begin{array}{l} u_1 \leftarrow g_1^r, u_2 \leftarrow g_2^r, e \leftarrow h^r m, \alpha \leftarrow H(u_{1,} u_{2,} e), v \leftarrow c^r d^{r\alpha} \\ (u_1, u_2, e, v) \text{ is the encrypted message} \end{array}$
- Alice performs decryption of (u₁, u₂, e, v) by:
 - $\alpha \leftarrow H(u_{1,}u_{2,}e)$
 - Output:
 - $m \leftarrow e/u_1^z$, if $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} = v$
 - REJECT otherwise

Algorithm – Encryption & Decryption

• Bob:
$$u_1 \leftarrow g_1^r$$
, $u_2 \leftarrow g_2^r$, $e \leftarrow h^r m$, $\alpha \leftarrow H(u_1, u_2, e)$, $v \leftarrow c^r d^{r\alpha}$

- Alice: $m \leftarrow e/u_1^z$, if $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} = v$
- If message is not altered en route to Alice, message is not rejected

$$- u_1^{x_1+y_1\alpha} u_2^{x_2+y_2\alpha} = u_1^{x_1} u_2^{x_1} u_1^{y_1\alpha} u_2^{y_2\alpha} = g_1^{rx_1} g_2^{rx_1} g_1^{ry_1\alpha} g_2^{ry_2\alpha} = (g_1^{x_1} g_2^{x_1})^r (g_1^{y_1} g_2^{y_2})^{r\alpha} = c^r d^{r\alpha} = v$$

$$- e/u_1^z = \frac{h^r m}{u_1^z} = g_1^{rz} \frac{m}{g_1^{rz}} = m$$

- Process is ok

Algorithm – Notions

- Part (u₁, e) is the very same of semantically secure ElGamal cryptosystem
- Therefore IND-CPA secure if the DDH assumption holds by Theorem 14.2
- Hash function helps to provide IND-CCA2 by offering data-integrity validating step

Algorithm - Performance

- Public key consists of five elements in G
 - vs. two of ElGamal
- The size of ciphertext is quadruple
 - Twice that of ElGamal
- Encryption requires 4 and decryption 2 exponentiations
 - Increased from two of encryption and one of decryption of ElGamal

Proof of security

- Proof is (linear) reduction to contradiction
 - Reducing a hard problem supported by the underlying intractability assumption to an alleged IND-CCA2 attack
- Hard problem is the DDH problem
- If Cramer-Shoup is not secure in IND-CCA2 mode, then DDH -problem can be solved
- **D** is the set of Diffie-Hellman quadrubles
 - All quadrubles $(g_{1,} g_{2,} u_{1,} u_{2}) = (g_{1,} g_{1}^{w}, g_{1}^{r_{1}}, g_{1}^{wr_{2}})$ for which $r_{1} = r_{2} \pmod{q}$

Proof of security

- Suppose an attacker *A* can break Cramer-Shoup
- Then Simon, given (g₁, g₂, u₁, u₂), can construct challenge ciphertext C*, which encrypts one of messages m₀, m₁ given by A and asks A to release its attacking advantage
 - If $(g_1, g_2, u_1, u_2) \in \mathbf{D}$, C* is valid Cramer-Shoup ciphertext
 - In this case, *A* can use its attacking advantage
 - If not, then message m_b is encrypted in Shannon's informationtheoretically secure sense and thus can not be deciphered
 - *A* can not have any advantage whatsoever!
- If \mathcal{A} has about 50% right, quadruble is probably not in **D**

Proof of security – setup

- First, (g_1, g_2, u_1, u_2) is given to Simon
- He picks $x_1, x_2, y_1, y_2, z_1, z_2$ from [0,q)
- And computes $c \leftarrow g_1^{x_1}g_2^{x_2}$, $d \leftarrow g_1^{y_1}g_2^{y_2}$, $h \leftarrow g_1^{z_1}g_2^{z_2}$
- Implicit private key is $(x_1, x_2, y_1, y_2, z_1, z_2)$
 - z is not explicitly expressed, but is uniquely determined since $g_2 = g_1^w$, $g_1^{z_1}g_2^{z_2} = g_1^{z_1}g_1^{wz_2} = g_1^{z_1+wz_2} = g_1^z$
 - It is possible to cipher and decipher with this impicit information (z_1, z_2)

Proof of security – the challenge ciphertext

- Simon gets m_0 and m_1 from \mathcal{A} and tosses a fair coin and gets b.
- He computes $e = u_1^{z_1} u_2^{z_2} m_b$, $\alpha = H(u_1, u_2, e)$, $v = u_1^{x_1 + y_1 \alpha} u_2^{x_2 + y_2 \alpha}$
- The challenge ciphertext is C*=(u₁, u₂, e, v)
 - "But usually $e=h^r m_h!??$ "
 - This is the trick!
- If $(g_1, g_2, u_1, u_2) \in \mathbf{D}$, there exist r such that $u_1 = g_1^{r}, u_2 = g_2^{r}$

$$- u_1^{z_1}u_2^{z_2} = (g_1^r)^{z_1}(g_2^r)^{z_2} = (g_1^{z_1}g_2^{z_2})^r = h^r$$

- Simulated encryption of (g_1, g_2, u_1, u_2) is valid
- So A should know b with positive Adv

Proof of security – the challenge ciphertext

- Else as far as \mathcal{A} is considered, C* could be from either one.
- Let's analyze what \mathcal{A} can calculate and form equations

$$\begin{array}{ccc} g_{1}^{z_{1}}g_{2}^{z_{2}} = h & \begin{pmatrix} 1 & \log_{g_{1}}g_{2} \\ r_{1} & r_{2}\log_{g_{1}}g_{2} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = \begin{pmatrix} \log_{g_{1}}h \\ \log_{g_{1}}(e/m_{0}) \end{pmatrix} (mod q) \\ g_{1}^{z_{1}r_{1}}g_{2}^{z_{2}r_{2}} = e/m_{i} & \rightarrow \\ for each m_{i} & \begin{pmatrix} 1 & \log_{g_{1}}g_{2} \\ r_{1} & r_{2}\log_{g_{1}}g_{2} \\ r_{1} & r_{2}\log_{g_{1}}g_{2} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = \begin{pmatrix} \log_{g_{1}}h \\ \log_{g_{1}}(e/m_{1}) \end{pmatrix} (mod q) \end{array}$$

• Matrix on the left hand side is invertible

 $- Det M = (r_2 - r_1) \log_{g_1} g_{2_1}, r_1 \neq r_{2_2}, g_2 \neq g_1 \rightarrow \log_{g_1} g_2 \neq 0$

- So two different implicit private key information (z_1, z_2) can be found, one for m_0 and one for m_1 , but both are equally likely!

Proof of security – the challenge ciphertext

- C* encrypts m_b in Shannon's information-theoretical security sense
 - 2 cipher texts, 2 plain texts, equal probability both
- \mathcal{A} does not have any advantage so m_h is absolutely secured
- Q: $(g_1, g_2, u_1, u_2) \in \mathbf{D}$?
- Simon answers: YES if \mathcal{A} was right, NO if \mathcal{A} was not.
 - This is how he gets same Adv as \mathcal{A} when Q is true
 - Then Simon's total Advantage is a half of A's Advantage (see lecture 6, page 24)

Theorem 15.1

- Let $(g_{1,}g_{2,}c, d, h, H)$ be a public key for the Cramer-Shoup encryption scheme in a group G of a prime order q, where $g_1 \neq 1$ and $g_2 \neq 1$. If $(g_1, g_2, U_1, U_2) \notin \mathbf{D}$ then the probability of successfully solving the following problem is bounded by $\frac{1}{q}$.
 - Input: public key $(g_{1}, g_{2}, c, d, h, H), (U_{1}, U_{2}, E) \in G^{3}$
 - Output: V st. (U_{1}, U_{2}, E, V) is a valid ciphertext deemed by the key owner
- Note: in here, the problem of finding correct ciphertext is simplified as to give V from the three other. As all other are inputs of the hash function H forming α and V is not, the easiest way is to deduce V from the other three.

Theorem 15.1

- What can be known from the input?
 - V must satisfy $U_1^{x_1+y_1\alpha}U_2^{x_2+y_2\alpha} = V$
 - From the construction of public key components c and d $g_1^{x_1}g_1^{wx_2}=c$, $g_1^{y_1}g_1^{wy_2}=d$
 - Other information of the $(x_{1}, x_{2}, y_{1}, y_{2})$ is not available.

$$\rightarrow \begin{pmatrix} 1 & 0 & w & 0 \\ 0 & 1 & 0 & w \\ r_1 & r_1 \alpha & w r_2 & w r_2 \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \log_{g_1} c \\ \log_{g_1} d \\ \log_{g_1} V \end{pmatrix} (mod \ q) \quad (15.3.9)$$

Theorem 15.1 - continued

• After Gaussian elimination matrix has the following form:

$$\begin{pmatrix} 1 & 0 & w & 0 \\ 0 & 1 & 0 & w \\ 0 & 0 & w(r_2 - r_1) & w(r_2 - r_1) \alpha \end{pmatrix}$$

- Det $M \neq 0$, because $r_1 r_2 \neq 0, w \neq 0$
- Thus (15.3.9) has (non-unique) solutions for each of V.
- So *A* cannot set the V unambiguously!
 - Every element of G (q elements) can be V fulfilling everything which A knows of the secret key!
 - Only one is correct, thus $\frac{1}{q}$ probability of correct V

Proof of security – cryptanalysis training courses

- We have not considered the cryptanalysis training course!
- When Simon gets $C = (U_1, U_2, E, V)$ from \mathcal{A} , Simon will conduct the data-integrity validating procedure, checking if $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} = v$
- If message is not rejected, Simon computes $m = E/(U_1^{z_1}U_2^{z_2})$
- 3 different cases:
 - C for which $(g_1, g_2, U_1, U_2) \in \mathbf{D}$
 - C such that it is rejected
 - C for which $(g_1, g_2, U_1, U_2) \notin \mathbf{D}$ and which is not rejected

Proof of security – cryptanalysis training courses

- What if \mathcal{A} send ciphertext C for which $(g_1, g_2, U_1, U_2) \in \mathbf{D}$?
- So there exist R st.

 $g_1^R = U_{1,g_2}^R = U_2 \rightarrow U_1^{z_1} U_2^{z_2} = g_1^{Rz_1} g_2^{Rz_2} = (g_1^{z_1} g_2^{z_2})^R = h^R$

- Simulated decryption is correct!
- And no new information is revealed from z_1 and z_2
 - Because triplet (U_1, U_2, h^R) connects them similarly to (g_1, g_2, h) , only the R exponent is more.
- No use of sending this kind of messages

Proof of security – cryptanalysis training courses

- What if *A* sends C such that it is rejected?
 - If C is rejected, A knows that $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} \neq v$
 - If three of x₁, y₁, x₂, y₂ are known, still the last one can't be easily determined due to DL assumption.
- What if A sends C for which (g₁, g₂, U₁, U₂) ∉ D and which is not rejected?
 - Due to Theorem 15.1, this is with probability $\frac{1}{q}$!
 - \mathcal{A} could as well guess correctly anything since G *is* of size q
- All in all, no profit from the cryptanalysis training courses!