The Cramer-Shoup Public-Key
 Cryptosystem

Tuesday 25.4.2006
Aleksi Hänninen
Based on a book:
Wenbo Mao: Modern cryptography : theory and practice
Upper Saddle River, NJ : Prentice Hall PTR, cop. 2004
ISBN: 0-13-066943-1

f-OAEP vs. Cramer-Shoup

- Cramer-Shoup has efficient "reduction to contradiction"
- vs. square reduction of f-OAEP
- The intractability assumptions are minimal namely: DDH
- vs. ROM (there exists none) + RSA Assumption 8.3
- Efficient reduction and weak intractability assumptions are desirable properties

DDH assumption

- In group G, given ($\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}$).
- There is no polynomially bounded algorithm to answer question "Is ab = c (mod \#G)?" with nonneglible Adv.
- Means that if you have polynomially bounded time, your answers are about 50% right.
- In here (later):
- \#G=q, $g=g_{1,} g^{a}=g_{2}=g_{1}^{w}, g^{b}=u_{1}=g_{1}^{r_{1}}, g^{c}=u_{2}=g_{2}^{r_{2}}=g_{1}^{w r_{2}}$
$-\left(g_{1,} g_{2,} u_{1}, u_{2}\right)=\left(g_{1}, g_{1}^{w}, g_{1}^{r_{1}}, g_{1}^{w r_{2}}\right)$
- $\mathrm{Q}:$ is $\mathrm{r}_{1}=\mathrm{r}_{2}(\bmod \mathrm{q})$?
- (iff $\mathrm{w}^{*} \mathrm{r}_{1}=\mathrm{w}^{*} \mathrm{r}_{2}$ and $\left.\operatorname{gcd}(\mathrm{w}, \mathrm{q})=1\right)$

Algorithm - Key Parameters

- G abelian group of large prime order q
- Every $g \in G \neq 1$ is generator of G (Corollary 5.3)
- Two random elements $g_{1,} g_{2} \in_{U} G$
- Five random integers $x_{1,} x_{2,} y_{1,} y_{2,} z \in[0, q)$
- Three elements $c \leftarrow g_{1}^{x_{1}} g_{2}^{x_{2}}, d \leftarrow g_{1}^{y_{1}} g_{2}^{y_{2}}, h \leftarrow g_{1}^{z}$
- A cryptographic hash function $H: G^{3} \rightarrow[0, q)$
- $\left(g_{1,} g_{2,}, d, h, H\right)$ is public key
- $\left(x_{1}, x_{2}, y_{1,} y_{2}, z\right)$ is private key
- Because public key is made from private by exponentiating known g_{1}, g_{2}, private key is secure due to DL assumption, which is weaker than DDH.

Algorithm - Key Setup

- Pick two random $g_{1,} g_{2} \in_{U} G$
- Pick five random integers $x_{1,} x_{2,} y_{1,} y_{2, z} z \in[0, q)$
- Compute $c \leftarrow g_{1}^{x_{1}} g_{2}^{x_{2}}, d \leftarrow g_{1}^{y_{1}} g_{2}^{y_{2}}, h \leftarrow g_{1}^{z}$
- Choose a cryptographic hash function $H: G^{3} \rightarrow[0, q)$
- $\left(g_{1,} g_{2,}, d, h, H\right)$ is public key
- $\left(x_{1}, x_{2}, y_{1,} y_{2,} z\right)$ is private key

Algorithm - Encryption \& Decryption

- Bob encrypts message mby
- Pick random $r \in[0, q)$
$-u_{1} \leftarrow g_{1}^{r}, u_{2} \leftarrow g_{2}^{r}, e \leftarrow h^{r} m, \alpha \leftarrow H\left(u_{1}, u_{2}, e\right), v \leftarrow c^{r} d^{r \alpha}$
- $\left(u_{1}, u_{2}, e, v\right)$ is the encrypted message
- Alice performs decryption of $\left(u_{1}, u_{2}, e, v\right)$ by:
- $\alpha \leftarrow H\left(u_{1}, u_{2}, e\right)$
- Output:
- $m \leftarrow e / u_{1}^{z}$, if $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v$
- REJECT otherwise

Algorithm - Encryption \& Decryption

- Bob: $u_{1} \leftarrow g_{1}^{r}, u_{2} \leftarrow g_{2}^{r}, e \leftarrow h^{r} m, \alpha \leftarrow H\left(u_{1}, u_{2}, e\right), v \leftarrow c^{r} d^{r \alpha}$
- Alice: $m \leftarrow e / u_{1}^{z}$, if $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v$
- If message is not altered en route to Alice, message is not rejected
$-u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=u_{1}^{x_{1}} u_{2}^{x_{1}} u_{1}^{y_{1} \alpha} u_{2}^{y_{2} \alpha}=g_{1}^{r x_{1}} g_{2}^{r x_{1}} g_{1}^{r y_{1} \alpha} g_{2}^{r y_{2} \alpha}=$ $\left(g_{1}^{x_{1}} g_{2}^{x_{1}}\right)^{r}\left(g_{1}^{y_{1}} g_{2}^{y_{2}}\right)^{r \alpha}=c^{r} d^{r \alpha}=v$
$-e / u_{1}^{z}=\frac{h^{r} m}{u_{1}^{z}}=g_{1}^{r z} \frac{m}{g_{1}^{r z}}=m$
- Process is ok

Algorithm - Notions

- Part $\left(u_{1}, e\right)$ is the very same of semantically secure ElGamal cryptosystem
- Therefore IND-CPA secure if the DDH assumption holds by Theorem 14.2
- Hash function helps to provide IND-CCA2 by offering data-integrity validating step

Algorithm - Performance

- Public key consists of five elements in G
- vs. two of ElGamal
- The size of ciphertext is quadruple
- Twice that of ElGamal
- Encryption requires 4 and decryption 2 exponentiations
- Increased from two of encryption and one of decryption of ElGamal

Proof of security

- Proof is (linear) reduction to contradiction
- Reducing a hard problem supported by the underlying intractability assumption to an alleged IND-CCA2 attack
- Hard problem is the DDH problem
- If Cramer-Shoup is not secure in IND-CCA2 mode, then DDH -problem can be solved
- D is the set of Diffie-Hellman quadrubles
- All quadrubles $\left(g_{1}, g_{2}, u_{1}, u_{2}\right)=\left(g_{1}, g_{1}^{w}, g_{1}^{r_{1}}, g_{1}^{w r_{r}}\right)$ for which $\mathrm{r}_{1}=\mathrm{r}_{2}(\bmod q)$

Proof of security

- Suppose an attacker \mathfrak{A} can break Cramer-Shoup
- Then Simon, given ($\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}$), can construct challenge ciphertext C^{*}, which encrypts one of messages $\mathrm{m}_{0}, \mathrm{~m}_{1}$ given by \mathcal{A} and asks \mathcal{A} to release its attacking advantage
- If $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathbf{D}, \mathrm{C}^{*}$ is valid Cramer-Shoup ciphertext
- In this case, \mathcal{A} can use its attacking advantage
- If not, then message m_{b} is encrypted in Shannon's informationtheoretically secure sense and thus can not be deciphered
- \mathcal{A} can not have any advantage whatsoever!
- If \mathcal{A} has about 50% right, quadruble is probably not in \mathbf{D}

Proof of security - setup

- First, $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)$ is given to Simon
- He picks $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{z}_{1}, \mathrm{z}_{2}$ from $[0, \mathrm{q})$
- And computes $c \leftarrow g_{1}^{x_{1}} g_{2}^{x_{2}}, d \leftarrow g_{1}^{y_{1}} g_{2}^{y_{2}}, h \leftarrow g_{1}^{z_{1}} g_{2}^{z_{2}}$
- Implicit private key is $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$
- z is not explicitly expressed, but is uniquely determined since

$$
g_{2}=g_{1}^{w}, g_{1}^{z_{1}} g_{2}^{z_{2}}=g_{1}^{z_{1}} g_{1}^{w z_{2}}=g_{1}^{z_{1}+w z_{2}}=g_{1}^{z}
$$

- It is possible to cipher and decipher with this impicit information $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$

Proof of security - the challenge ciphertext

- Simon gets m_{0} and m_{1} from \mathcal{A} and tosses a fair coin and gets b .
- He computes $e=u_{1}^{z_{1}} u_{2}^{z_{2}} m_{b}, \alpha=H\left(u_{1}, u_{2}, e\right), v=u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}$
- The challenge ciphertext is $\mathrm{C}^{*}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{e}, \mathrm{v}\right)$
- "But usually e=hrm ${ }^{r}$!?? "
- This is the trick!
- If $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathbf{D}$, there exist r such that $\mathrm{u}_{1}=\mathrm{g}_{1}{ }^{\mathrm{r}}, \mathrm{u}_{2}=\mathrm{g}_{2}{ }^{\mathrm{r}}$
$-u_{1}^{z_{1}} u_{2}^{z_{2}}=\left(g_{1}^{r}\right)^{z_{1}}\left(g_{2}^{r}\right)^{z_{2}}=\left(g_{1}^{z_{1}} g_{2}^{z_{2}}\right)^{r}=h^{r}$
- Simulated encryption of $\left(g_{1}, g_{2}, u_{1}, u_{2}\right)$ is valid
- So \mathcal{A} should know b with positive Adv

Proof of security - the challenge ciphertext

- Else as far as \mathcal{A} is considered, C^{*} could be from either one.
- Let's analyze what \mathcal{A} can calculate and form equations

$$
\begin{aligned}
& \stackrel{g_{1}^{z_{1}} g_{2}^{z_{2}}=h}{g_{1}^{z_{1} r_{1}} g_{2}^{z_{2} r_{2}}=e / m_{i}} \\
& \text { for each } m_{i}
\end{aligned} \rightarrow \quad\left(\begin{array}{cc}
1 & \log _{g_{1}} g_{2} \\
r_{1} & r_{2} \log _{g_{1}} g_{2}
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{\log _{g_{1}} h}{\log _{g_{1}}\left(e / m_{0}\right)}(\bmod q) .
$$

- Matrix on the left hand side is invertible
_ $\operatorname{Det} M=\left(r_{2}-r_{1}\right) \log _{g_{1}} g_{2,} r_{1} \neq r_{2}, g_{2} \neq g_{1} \rightarrow \log _{g_{1}} g_{2} \neq 0$
- So two different implicit private key information $\left(z_{1}, z_{2}\right)$ can be found, one for m_{0} and one for m_{1}, but both are equally likely!

Proof of security - the challenge ciphertext

- C* encrypts m_{b} in Shannon's information-theoretical security sense
- 2 cipher texts, 2 plain texts, equal probability both
- \mathcal{A} does not have any advantage so m_{b} is absolutely secured
- $\mathrm{Q}:\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathbf{D}$?
- Simon answers: YES if \mathscr{A} was right, NO if \mathscr{A} was not.
- This is how he gets same Adv as \mathcal{A} when Q is true
- Then Simon's total Advantage is a half of \mathfrak{A} 's Advantage (see lecture 6, page 24)

Theorem 15.1

- Let $\left(g_{1,} g_{2,}, d, h, H\right)$ be a public key for the Cramer-Shoup encryption scheme in a group G of a prime order q , where $g_{1} \neq 1$ and $g_{2} \neq 1$. If $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{U}_{1}, \mathrm{U}_{2}\right) \notin \mathbf{D}$ then the probability of successfully solving the following problem is bounded by $\frac{1}{q}$.
- Input: public key $\left(g_{1,} g_{2,} c, d, h, H\right),\left(U_{1,} U_{2}, E\right) \in G^{3}$
- Output: V st. $\left(U_{1}, U_{2}, E, V\right)$ is a valid ciphertext deemed by the key owner
- Note: in here, the problem of finding correct ciphertext is simplified as to give V from the three other. As all other are inputs of the hash function H forming α and V is not, the easiest way is to deduce V from the other three.

Theorem 15.1

- What can be known from the input?
- V must satisfy $U_{1}^{x_{1}+y_{1} \alpha} U_{2}^{x_{2}+y_{2} \alpha}=V$
- From the construction of public key components c and d $g_{1}^{x_{1}} g_{1}^{w x_{2}}=c, \quad g_{1}^{y_{1}} g_{1}^{w y_{2}}=d$
- Other information of the $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is not available.

$$
\rightarrow\left(\begin{array}{cccc}
1 & 0 & w & 0 \\
0 & 1 & 0 & w \\
r_{1} & r_{1} \alpha & w r_{2} & w r_{2} \alpha
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
y_{1} \\
x_{2} \\
y_{2}
\end{array}\right)=\left(\begin{array}{l}
\log _{g_{1}} c \\
\log _{g_{1}} d \\
\log _{g_{1}} V
\end{array}\right)(\bmod q)_{(15.3 .9)}
$$

Theorem 15.1-continued

- After Gaussian elimination matrix has the following form:

$$
\left(\begin{array}{cccc}
1 & 0 & w & 0 \\
0 & 1 & 0 & w \\
0 & 0 & w\left(r_{2}-r_{1}\right) & w\left(r_{2}-r_{1}\right) \alpha
\end{array}\right)
$$

- Det $M \neq 0$, because $r_{1}-r_{2} \neq 0, w \neq 0$
- Thus (15.3.9) has (non-unique) solutions for each of V.
- So \mathcal{A} cannot set the V unambiguously!
- Every element of G (q elements) can be V fulfilling everything which A knows of the secret key!
- Only one is correct, thus $\frac{1}{q}$ probability of correct V

Proof of security - cryptanalysis training courses

- We have not considered the cryptanalysis training course!
- When Simon gets $\mathrm{C}=\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{E}, \mathrm{V}\right)$ from \mathcal{A}, Simon will conduct the data-integrity validating procedure, checking if $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v$
- If message is not rejected, Simon computes $m=E /\left(U_{1}^{z_{1}^{2}} U_{2}^{z_{2}}\right)$
- 3 different cases:
- C for which $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{U}_{1}, \mathrm{U}_{2}\right) \in \mathbf{D}$
- C such that it is rejected
- C for which $\left(g_{1}, g_{2}, U_{1}, U_{2}\right) \notin \mathbf{D}$ and which is not rejected

Proof of security - cryptanalysis training courses

- What if \mathcal{A} send ciphertext C for which $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{U}_{1}, \mathrm{U}_{2}\right) \in \mathbf{D}$?
- So there exist R st.

$$
g_{1}^{R}=U_{1}, g_{2}^{R}=U_{2} \rightarrow U_{1}^{z_{1}} U_{2}^{z_{2}}=g_{1}^{R z_{1}} g_{2}^{R z_{2}}=\left(g_{1}^{z_{1}} g_{2}^{z_{2}}\right)^{R}=h^{R}
$$

- Simulated decryption is correct!
- And no new information is revealed from z_{1} and z_{2}
- Because triplet $\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{~h}^{\mathrm{R}}\right)$ connects them similarly to $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~h}\right)$, only the R exponent is more.
- No use of sending this kind of messages

Proof of security - cryptanalysis training courses

- What if \mathcal{A} sends C such that it is rejected?
- If C is rejected, A knows that $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha} \neq v$
- If three of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are known, still the last one can't be easily determined due to DL assumption.
- What if \mathcal{A} sends C for which $\left(g_{1}, g_{2}, \mathrm{U}_{1}, \mathrm{U}_{2}\right) \notin \mathbf{D}$ and which is not rejected?
- Due to Theorem 15.1, this is with probability $\frac{1}{q}$!
- \mathcal{A} could as well guess correctly anything since G is of size q
- All in all, no profit from the cryptanalysis training courses!

