Formal and Strong Security Definitions I

There are three kinds of lies: small lies, big lies and statistics.

Sven Laur
swen@math.ut.ee

Helsinki University of Technology

Basic theoretical notions

Formal syntax of a cryptosystem I

Various domains associated with the cryptosystem:
\mathcal{M} - a set of plausible messages (plaintexts);
\mathcal{C} - a set of possible cryptograms (ciphertexts);
\mathcal{R} - random coins used by the encryption algorithm.

Parameters used by the encryption and decryption algorithms:
pk - a public key (public knowledge needed to generate valid encryptions);
sk - a secret key (knowledge that allows to efficiently decrypt ciphertexts).

Formal syntax of a cryptosystem II

Algorithms that define a cryptosystem:
\mathcal{G} - a randomised key generation algorithm;
$\mathcal{E}_{\mathrm{pk}}$ - a randomised encryption algorithm;
$\mathcal{D}_{\text {sk }}$ - a deterministic decryption algorithm.
The key generation algorithm \mathcal{G} outputs a random key pair (pk, sk).
The encryption algorithm is an efficient mapping $\mathcal{E}_{\mathrm{pk}}: \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{C}$.
The decryption algorithm is an efficient mapping $\mathcal{D}_{\text {sk }}: \mathcal{C} \rightarrow \mathcal{M}$.
A cryptosystem must be functional

$$
\forall(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}, \forall m \in \mathcal{M}, \forall r \in \mathcal{R}: \quad \mathcal{D}_{\text {sk }}\left(\mathcal{E}_{\mathrm{pk}}(m ; r)\right)=m
$$

When is a cryptosystem secure?

It is rather hard to tell when a cryptosystem is secure. Instead people often specify when a cryptosystem is broken:

- Complete key recovery. Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary deduces sk in a feasible time with a reasonable probability.
- Complete plaintext recovery. Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary is able to recover m_{i} in a feasible time with a reasonable probability.
- Partial plaintext recovery. Given pk and $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right), \ldots, \mathcal{E}_{\mathrm{pk}}\left(m_{n}\right)$, the adversary is able to recover a part of m_{i} in a feasible time with a reasonable probability.

The list is not complete and neither can never be completed!

Semantic security

Shaft Goldwasser and Silvio Micali, Probabilistic Encryption \& How To Play Mental Poker Keeping Secret All Partial Information, 1982.

A Public Key Cryptosystem is ε secure if an adversary does not have an ε advantage in evaluating, given the ciphertext, any easy to compute predicate relative to the cleartext.

Contemporary treatment of semantic security:

- Mihir Bellare, Anand Desai, E. Jokipii and Phillip Rogaway, A Concrete Security Treatment of Symmetric Encryption, 1997.
- Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway, Relations among Notions of Security for Public-Key Encryption Schemes, 1998.

IND-CPA security

Malice is good in breaking security of a cryptosystem ($\mathcal{G}, \mathcal{E}, \mathcal{D}$) if Malice can distinguish two experiments (hypothesis testing):

$\operatorname{Experiment}^{\operatorname{Exp}}{ }_{0}$	Experiment Exp_{1}
1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$	1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$
2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk)	2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk)
3. guess $\leftarrow \operatorname{Malice}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{0}\right)\right)$	3. guess $\leftarrow \operatorname{Malice}\left(\sigma, \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)\right)$

with a non-negligible* advantage

$$
\operatorname{Adv}(\text { Malice })=\frac{1}{2} \cdot|\underbrace{\operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{0}\right]}_{\text {True positives }}-\underbrace{\operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{1}\right]}_{\text {False positives }}|
$$

Bit-guessing game with a fair coin

Consider Protocol 14.1 in Mao's book:

1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}$
2. $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk) where σ denotes advice, e.g. pk.
3. Oracle \mathcal{O} flips a fair coin $b \leftarrow\{0,1\}$ and sets $c \leftarrow \mathcal{E}_{\mathrm{pk}}\left(m_{b}\right)$.
4. guess $\leftarrow \operatorname{Malice}(\sigma, c)$

$$
\begin{aligned}
\operatorname{Pr}[\text { guess }=b] & =\operatorname{Pr}[b=0] \operatorname{Pr}[\text { guess }=0 \mid b=0]+\operatorname{Pr}[b=1] \operatorname{Pr}[\text { guess }=1 \mid b=1] \\
& =\frac{1}{2} \cdot \operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{0}\right]+\frac{1}{2} \cdot\left(1-\operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{1}\right]\right) \\
& =\frac{1}{2} \pm \operatorname{Adv}(\text { Malice })
\end{aligned}
$$

Bit-guessing game with a biased coin*

Consider the bit-guessing game when the coin is biased $\operatorname{Pr}[b=1]=\frac{3}{4}$.
Show that the probability of correct answer is in the range

$$
\frac{1}{4}-\frac{1}{2} \cdot \operatorname{Adv}(\text { Malice }) \leq \operatorname{Pr}[\text { guess }=b] \leq \frac{3}{4}+\frac{1}{2} \cdot \operatorname{Adv}(\text { Malice })
$$

Give an interpretation to the formula.
Is there any way to "cleverly" use subroutine Malice so that

$$
\operatorname{Pr}[\text { guess }=b]=\frac{3}{4}+\frac{1}{2} \cdot \operatorname{Adv}(\text { Malice }) ?
$$

IND-CPA \Longrightarrow Semantic security

Let $\pi: \mathcal{M} \rightarrow\{0,1\}$ be a predicate such that $\operatorname{Pr}[m \leftarrow \mathcal{M}: \pi(m)=1]=\frac{1}{2}$. If Charlie can efficiently and correctly guess $\pi(m)$ given only pk and $\mathcal{E}_{\mathrm{pk}}(m)$:

$$
\text { Adv }^{\text {guess }}(\text { Charlie })=\operatorname{Pr}\left[\begin{array}{l}
(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{G}, m \leftarrow \mathcal{M}: \\
\operatorname{Charlie}\left(\mathrm{pk}, \mathcal{E}_{\mathrm{pk}}(m)\right)=\pi(m)
\end{array}\right]-\frac{1}{2} \geq 0
$$

then we can construct Malice:

1. Malice chooses $m_{0}, m_{1} \leftarrow \mathcal{M}$ randomly.
2. Given $c=\mathcal{E}_{\mathrm{pk}}\left(m_{b}\right)$, Malice runs Charlie:

- If Charlie(pk, $c)=\pi\left(m_{0}\right)$ return 0
- Else return 1.

How well does Malice perform?

Evidently, we can write

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{0}\right]=\operatorname{Pr}\left[\begin{array}{l}
(\text { pk }, \text { sk }) \leftarrow \mathcal{G}, m_{0}, m_{1} \leftarrow \mathcal{M}: \\
\text { Charlie }\left(\text { pk }, \mathcal{E}_{\text {pk }}\left(m_{0}\right)\right)=\pi\left(m_{0}\right)
\end{array}\right] \\
& \operatorname{Pr}\left[\text { guess }=0 \mid \operatorname{Exp}_{1}\right]=\operatorname{Pr}\left[\begin{array}{l}
(\text { pk }, \text { sk }) \leftarrow \mathcal{G}, m_{0}, m_{1} \leftarrow \mathcal{M}: \\
\text { Charlie }\left(\text { pk }, \mathcal{E}_{\text {pk }}\left(m_{1}\right)\right)=\pi\left(m_{0}\right)
\end{array}\right]
\end{aligned}
$$

and thus

$$
\begin{aligned}
2 \operatorname{Adv}(\text { Malice }) & \left.=\left\lvert\, \frac{1}{2}+\operatorname{Adv}^{\text {guess }}(\text { Charlie })-\operatorname{Pr}\left[\text { Charlie }\left(\mathrm{pk}, \varepsilon_{\mathrm{pk}}\left(m_{1}\right)\right)=\pi\left(m_{0}\right)\right]\right. \right\rvert\, \\
& =\operatorname{Adv}^{\text {guess }}(\text { Charlie })
\end{aligned}
$$

since for fixed m_{1}, we have always $\operatorname{Pr}\left[\operatorname{Charlie}\left(\mathrm{pk}, \mathcal{E}_{\mathrm{pk}}\left(m_{1}\right)\right)=\pi\left(m_{0}\right)\right]=\frac{1}{2}$.

IND-CPA \Longrightarrow Semantic security

Why does IND-CPA security imply semantic security w.r.t. π ?

Why π must be efficiently computable?
Extend the proof for the general case where π is not a balanced predicate*.
What if Charlie can predict a function $f: \mathcal{M} \rightarrow \mathbb{N}$ from pk and $\mathcal{E}_{\mathrm{pk}}(m)$?
Extend the proof for the general case where Charlie predicts f^{*}.

How much time can Malice spend?

Usually, it is assumed that Malice uses a probabilistic polynomial time algorithm to launch the attack. What does it mean?

Example

1994-426 bit RSA challenge broken.
$2003-576$ bit RSA challenge broken.
$2005-640$ bit RSA challenge broken.
Instead of a concrete encryption scheme RSA is a family of cryptosystems and Malice can run algorithm polynomial in the length k of RSA modulus.

Negligible advantage means that the advantage decreases faster than k^{-c} for any $c>0$.

A concrete example

For simplicity, imagine that Malice runs algorithms that finish in time k^{5}.

Advantage

Uniform vs non-uniform security

For each polynomial-time algorithm A_{i} the advantage was negligible:
\Longrightarrow scheme is secure against polynomial uniform adversaries.
If Malice chooses a good algorithm for each k separately
\Longrightarrow she breaks the scheme with advantage $\frac{1}{2}$;
\Longrightarrow scheme is insecure against polynomial non-uniform adversaries.
In practice, each adversary has limited resources
\Longrightarrow Given time t, Malice should not achieve Adv (Malice) $\geq \varepsilon_{\text {critical }}$.
If scheme is secure against non-uniform adversaries then for large k :
$\Longrightarrow \operatorname{Adv}($ Malice $) \leq \varepsilon_{\text {critical }}$ for all t time algorithms;
\Longrightarrow the scheme is still efficiently implementable.

Is non-uniform security model adequate in practice*?

Consider the case of browser certificates:

- Several Verisign certificates have been issued in 1996-1998.
- As a potential adversary knows pk, he can design a special crack algorithm for that pk only. He does not care about other values of pk.
- Maybe a special bit pattern of $N=p q$ allows more efficient factorisation?

Why can't we fix pk in the non-uniform model?
Is there a model that describes reality without problems*?
Does security against (non-)uniform adversaries heuristically imply security in real applications*?

Concrete examples

Commutative cryptosystems

A cryptosystem $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is commutative if for any valid public keys $\mathrm{pk}_{\mathrm{A}}, \mathrm{pk}_{\mathrm{B}}$

$$
\forall m \in \mathcal{M}: \quad \mathcal{E}_{p k_{A}}\left(\mathcal{E}_{p k_{B}}(m)\right)=\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(\mathcal{E}_{\mathrm{pk}_{A}}(m)\right) .
$$

In particular it implies

$$
m=\mathcal{D}_{s k_{A}}\left(\mathcal{D}_{s k_{B}}\left(\mathcal{E}_{\mathrm{pk}_{A}}\left(\mathcal{E}_{\mathrm{pk}_{B}}(m)\right)\right)\right)=\mathcal{D}_{\text {sk }_{B}}\left(\mathcal{D}_{\mathrm{sk}_{A}}\left(\mathcal{E}_{\mathrm{pk}_{B}}\left(\mathcal{E}_{\mathrm{pk}_{A}}(m)\right)\right)\right) .
$$

The latter allows to swap the order of encryption and decryption operations.

Mental poker protocol

1. Alice sends randomly shuffled encryptions $\varepsilon_{\mathrm{pk}_{A}}(\boldsymbol{巾} 2), \ldots, \varepsilon_{\mathrm{pk}_{A}}(\Omega \mathrm{~A})$.
2. Bob chooses randomly c_{A}, c_{B} and sends $c_{A}, \mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(c_{B}\right)$ to Alice.
3. Alice sends $\mathcal{D}_{\text {sk }_{A}}\left(\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(c_{B}\right)\right)$ to Bob and locally outputs $\mathcal{D}_{\mathrm{sk}_{A}}\left(c_{A}\right)$.
4. Bob outputs locally $\mathcal{D}_{\text {sk }_{B}}\left(\mathcal{D}_{\text {sk }_{A}}\left(\mathcal{E}_{\mathrm{pk}_{\mathrm{B}}}\left(c_{B}\right)\right)\right)=\mathcal{D}_{\mathrm{sk}_{\mathrm{A}}}\left(c_{B}\right)$.
5. Alice sends her pk_{A} to Bob. Bob sends his $\mathrm{pk} \mathrm{k}_{\mathrm{B}}$ to Alice.

RSA with shared modulus $N=p q$, and keys $\left(\mathrm{pk}_{\mathrm{A}}, \mathrm{sk}_{\mathrm{A}}\right)=\left(e_{A}, d_{A}\right)$ and $\left(\mathrm{pk}_{\mathrm{B}}, \mathrm{sk}_{\mathrm{B}}\right)=\left(e_{B}, d_{B}\right)$ such that

$$
e_{A} d_{A}=1 \quad \bmod \phi(N) \quad e_{B} d_{B}=1 \quad \bmod \phi(N)
$$

is insecure after Step 5. Why?

Attacks against mental poker game

Recall that RSA encryption preserves quadratic residuocity and both parties can compute it. Leaking residuocity can give an edge to Bob.

Brute force attack. Let $\boldsymbol{\uparrow} 2, \ldots, \bigcirc A$ be encoded as $1, \ldots, 52$. Then corresponding encryptions are $1,2^{e_{A}}, \ldots, 56^{e_{A}}$ modulo N. Obviously,

$$
2^{e_{A}} \cdot 2^{e_{A}}=4^{e_{A}} \quad \bmod N, \quad \ldots, \quad 7^{e_{A}} \cdot 7^{e_{A}}=49^{e_{A}} \quad \bmod N
$$

and Bob can with high probability separate encryptions of $2, \ldots, 7$.
Similar connections allow Bob to reveal most of the cards.
There are completely insecure encodings for the cards \Longrightarrow vanilla RSA is not applicable for secure encryption;
\Longrightarrow vanilla RSA is not IND-CPA secure;

Goldwasser-Micali cryptosystem

Famous conjecture. Let N be a large RSA modulus. Then without factorisation of N it is infeasible to determine whether a random $c \in J_{N}(1)$ is a quadratic residue or not.

Key generation. Generate safe primes $p, q \in \mathbb{P}$ and choose quadratic non-residue $y \in J_{N}(1)$ modulo $N=p q$. Set pk $=(n, y)$, $\mathrm{sk}=(p, q)$.

Encryption. First choose a random $x \leftarrow \mathbb{Z}_{N}^{*}$ and then compute

$$
\mathcal{E}_{\mathrm{pk}}(0)=x^{2} \quad \bmod N \quad \text { and } \quad \mathcal{E}_{\mathrm{pk}}(1)=y x^{2} \quad \bmod N .
$$

Decryption. Given c, compute $c_{1} \bmod p$ and $c_{2} \bmod q$ and use Euler's criterion to test whether c is a quadratic residue or not.

EIGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice

$$
\begin{array}{ll}
x \leftarrow \mathbb{Z}_{|G|} & \stackrel{y=g^{x}}{\longleftrightarrow} \\
g^{x k}=\left(g^{k}\right)^{x} & \stackrel{g^{k}}{\longleftrightarrow}
\end{array}
$$

with one-time pad using multiplication in $G=\langle g\rangle$ as encoding rule

$$
\mathcal{E}_{\mathrm{pk}}(m)=\left(g^{k}, m \cdot g^{x k}\right)=\left(g^{k}, m \cdot y^{k}\right) \quad \text { for all elements } m \in G
$$

with a public key $\mathrm{pk}=y=g^{x}$ and a secret key sk $=x$.

Decisional Diffie-Hellman Assumption (DDH)

DDH Assumption. For a fixed group G, Charlie can distinguish experiments

Exp_{0}	Exp_{1}
1. $x, k \leftarrow \mathbb{Z}_{q}, q=\|G\|$	1. $x, k, c \leftarrow \mathbb{Z}_{q}, q=\|G\|$
2. guess $\leftarrow \operatorname{Charlie}\left(g, g^{x}, g^{k}, g^{x k}\right)$	2. guess $\leftarrow \operatorname{Charlie}\left(g, g^{x}, g^{k}, g^{c}\right)$

with a negligible advantage Adv(Charlie).
Obviously, the Diffie-Hellman key exchange protocol is secure under the DDH \Longleftarrow we can change $g^{x k}$ with g^{c} and Charlie cannot tell the difference.

If the Diffie-Hellman key exchange protocol is secure \Longrightarrow ElGamal is secure, as the one-time pad is unbreakable.

DDH \Longrightarrow EIGamal is IND-CPA

Let Malice be good in IND-CPA game. Now Charlie given $\left(g, g^{x}, g^{k}, z\right)$:

1. Set $\mathrm{pk}=g^{x}$ and $\left(m_{0}, m_{1}, \sigma\right) \leftarrow$ Malice (pk).
2. Toss a fair coin $b \leftarrow\{0,1\}$ and set $c=\left(g^{k}, m_{b} z\right)$.
3. Get guess \leftarrow Malice (σ, c).
4. If guess $=b$ return 0 else output 1 .

We argue that this is a good strategy to win DDH game.

Charlie's advantage in DDH game

Observe
$\operatorname{Pr}\left[\right.$ Charlie $\left.=0 \mid \operatorname{Exp}_{0}\right]=\operatorname{Pr}[$ Success in bit guessing game $]=\frac{1}{2} \pm \operatorname{Adv}($ Malice $)$
$\operatorname{Pr}\left[\right.$ Charlie $\left.=0 \mid \operatorname{Exp}_{1}\right]=\operatorname{Pr}[$ Guess b given a random cryptogram $]=\frac{1}{2}$
and we get

$$
\begin{aligned}
\operatorname{Adv}(\text { Charlie }) & \left.\left.=\frac{1}{2} \cdot \right\rvert\, \operatorname{Pr}\left[\text { Charlie }=0 \mid \operatorname{Exp}_{0}\right]-\operatorname{Pr}\left[\text { Charlie }=0 \mid \operatorname{Exp}_{1}\right] \right\rvert\, \\
& =\frac{1}{2} \cdot \operatorname{Adv}(\text { Malice })
\end{aligned}
$$

Therefore good attack against IND-CPA game implies good attack against DDH game.

Why some instantiations of ElGamal fail?

If the message $m \notin G$ then $m g^{x k}$ is not one-time pad, for example

$$
G=\langle 2 \bmod 6\rangle \quad \Longrightarrow \quad m 2^{x k}=m \quad \bmod 2
$$

and a single bit of information is always revealed.
Fix a generator of $g \in \mathbb{Z}_{p}^{*}$ for large $p \in \mathbb{P}$ such that DDH holds. If public key $y=g^{x}$ is quadratic residue (QR), then y^{k} is also QR . m is QR if and only if $m y^{k}$ is QR

Fix I. Choose $g \in \mathrm{QR}$ so that $\langle g\rangle=\mathrm{QR}$ and $m \in \mathrm{QR}$.
Fix II. Choose almost regular hash function $h: G \rightarrow\{0,1\}^{\ell}$ and define $\mathcal{E}_{\mathrm{pk}}(m)=\left(g^{k}, h\left(g^{x k}\right) \oplus m\right)$ for $m \in\{0,1\}^{\ell}$. Then $h\left(g^{x k}\right)$ is almost uniform.

Hybrid encryption

Assume that $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is a IND-CPA secure cryptosystem and prg is a secure pseudorandom generator (secure stream-cipher, e.g. AES in counter mode).

Encrypt. For $m \in\{0,1\}^{\ell}$ choose seed $\in \mathcal{M}$ randomly and compute

$$
\mathcal{E}_{\mathrm{pk}}^{*}(m)=\left(\mathcal{E}_{\mathrm{pk}}(\text { seed }), \operatorname{prg}(\text { seed }) \oplus m\right)
$$

Decrypt. Given $\left(c_{1}, c_{2}\right)$ compute seed $\leftarrow \mathcal{D}_{\text {sk }}\left(c_{1}\right)$ and output $c_{2} \oplus \operatorname{prg}($ seed $)$.

Theorem. The hybrid encryption is IND-CPA secure.

All homomorphic encryptions are vulnerable

A cryptosystem is homomorphic if $\mathcal{E}_{\mathrm{pk}}\left(m_{1}\right) \cdot \mathcal{E}_{\mathrm{pk}}\left(m_{2}\right)=\mathcal{E}_{\mathrm{pk}}\left(m_{1} \circ m_{2}\right)$.

- Vanilla RSA is homomorphic.
- ElGamal is homomorphic.
- Goldwasser-Micali is homomorphic.

If Malice can somehow decrypt limited number of messages \Longrightarrow he can perfectly hide what messages are actually decrypted.

Sometimes decryption of few carefully selected cryptograms may leak enough information so that Malice can completely break the scheme.

