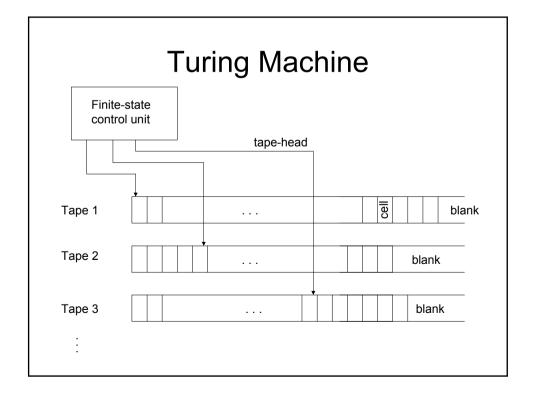
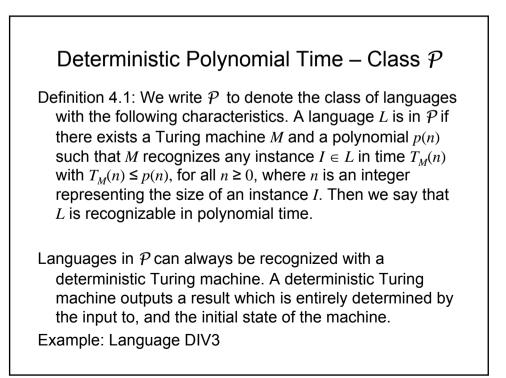


- •Deterministic Polynomial Time
- Probabilistic Polynomial Time
- •Non-deterministic Polynomial Time
- •Non-Polynomial Bounds
- •Polynomial-time Indistinguishability



Turing computation

- A finite number of symbols are placed in the leftmost cells of the tape. The remaining cells to the right are set to blank.
- When in initial state the scanning starts from the leftmost cell.
- The tapeheads read contents of the cells. A step of access by tapehead is called a legal move.
- When a termination condition is reached, the machine is said to recognize the input.
- An input which can reach a termination condition is called an instance in a recognizable language.

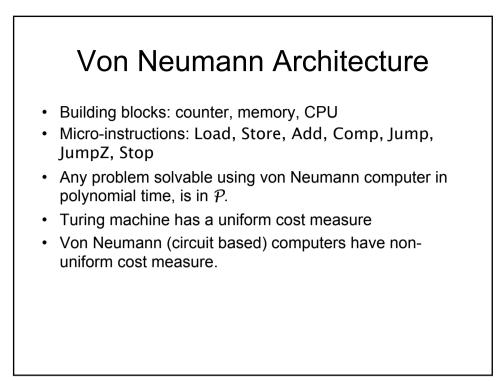


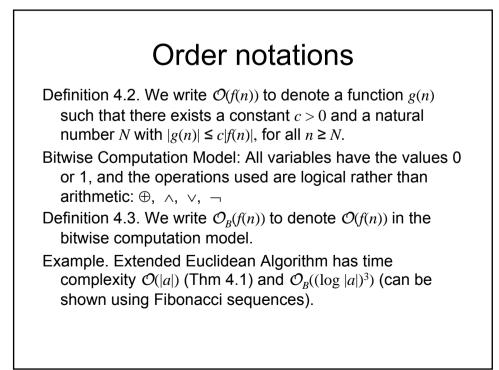
The finite state control unit of DIV3

Current state	Symbol on the tape	Next move	New state
q_0	0	right	q_0
	1	right	q_1
	"blank"	"yes" and stop	-
q_1	0	right	q_2
	1	right	q_0
	"blank"	"no" and stop	-
<i>q</i> ₂	0	right	q_1
	1	right	q_2
	"blank"	"no" and stop	-

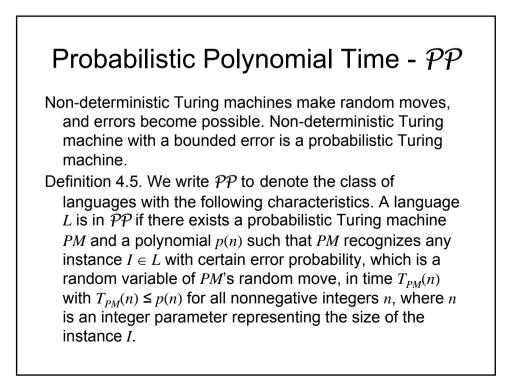
Polynomial-Time Computational Problems

- The problems in \mathcal{P} are decisional problems, output is one bit.
- Since Turing machines can also write symbols on the tape, they can handle polynomial-time computational problems.
- E.g., using DIV3 repeatedly a Turing machine can compute base-3 representation of a given non-negative integer *x*, and hence a Turing machine can compute division with 3 in time C·|*x*|.





Basic Modular Arithmetic Operations		
Operation for $a, b \in [1, n-1]$	Time Complexity	
$a \pm b \pmod{n}$	$\mathcal{O}_B(\log n)$	
$a \cdot b \pmod{n}$	$\mathcal{O}_B((\log n)^2)$	
$b^{-1} \pmod{n}$	$\mathcal{O}_B((\log n)^2)$	
$a/b \pmod{n}$	$\mathcal{O}_B((\log n)^2)$	
$a^b \pmod{n}$	$\mathcal{O}_B((\log n)^3)$	



Error Probabilities

Prob[*PM* recognizes $I \in L \mid I \in L$] $\geq \varepsilon$

Prob[*PM* recognizes $I \in L \mid I \notin L$] $\leq \delta$

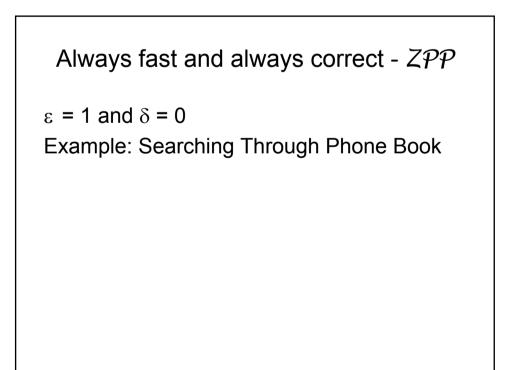
where the probabilities are taken over the random tape (random moves) of *PM*.

The bounds ϵ and δ are constans such that

 $1_{\!\!\!\!/ 2}^{\prime} < \epsilon \leq 1$ and $0 \leq \delta < 1_{\!\!\!/ 2}^{\prime}$. That is

Prob[*PM* recognizes $I \notin L \mid I \in L$] $\leq 1 - \varepsilon < \frac{1}{2}$

- ϵ is the completeness probability bound (1- ϵ is the upper bound for probabilities of false rejection)
- δ is the soundness probability bound (that is, the upperbound of probability for false acceptance)



Always Fast and Probably Correct- $\mathcal{PP}(MonteCarlo)$

 $\varepsilon = 1 \text{ and } \delta > 0$ Example: Solovay-Strassen primality test Input: *p* a positive integer *a*, 1 < *a* < *p* - 1, check if $\left(\frac{a}{p}\right) = a^{p-1} \pmod{p}$

no-biased algorithm: rejection is always correct

Probably Fast and Always Correct $\mathcal{PP}(Las Vegas)$

 ϵ < 1 and δ = 0

May terminate without output, but if there is output it is always correct

Example 1: Finding collisions

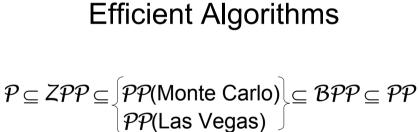
Example 2: Quantum Factorization

For any *N* composite, the proportion of *a*, for which the least integer *r* such that $a^r = 1 \pmod{N}$ is even, is non-negligible. Then one can find non-trivial square roots of 1, which is sufficient to factor *N*.

Probably Fast and Probably Correct \mathcal{BPP}

 $\begin{array}{l} \frac{1}{2} + \alpha \leq \epsilon < 1 \text{ and } 0 < \delta \leq \frac{1}{2} - \beta \ , \\ \text{where } \alpha, \ \beta \in (0, \frac{1}{2}) \\ \text{Bounded error probability Probabilistic} \\ \text{Polynomial time} \\ \text{``Atlantic City Algorithms''} \end{array}$

Example: Quantum Key Distribution



Definition4.6: An algorithm is said to be efficient if it is deterministic or randomised with execution time bounded from above by a polynomial in the size of the input.

Non-deterministic Polynomial Time \mathcal{NP}

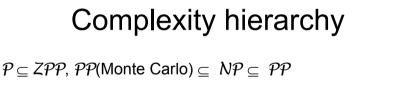
Example: Square-Freeness

Input: N a positive and odd composite integer

Question: Is *N* square-free? Answer YES if there exists no prime *p* such that $p^2|N$.

Solution: Use witness $\phi(N)$. If $p^2|N$ then $p \mid gcd(N, \phi(N))$

An algorithm to recognize languages in NP has at each step a finite number of possible moves. The algorithm recognizes *L* if there exists at least one sequence of legal moves (recognition sequence) leading to the terminating condition. Such a sequence may be difficult to find, but its existence is can be verified in polynomial time given a witness.



Definition 4.10. We say that a language *L* is polynomially reducible to another language L_0 if there exists a deterministic polynomially-bounded Turing machine *M* which will convert each instance $I \in L$ into instance $I_0 \in$ L_0 , such that $I \in L$ if and only if $I_0 \in L_0$.

Definition 4.11. A language $L_0 \in N\mathcal{P}$ is $N\mathcal{P}$ -complete if any $L \in NP$ is polynomially reducible to L_0 . Example: Satisfiability

Non-Polynomial Bounds

Definition 4.12. A function $f(n): \mathbf{N} \to \mathbf{R}$ is said to be unbounded by any polynomial in n (or, nonpolynomially bounded quantity) if for any polynomial p(n) there exists a natural number n_0 such that f(n) > p(n), for all $n > n_0$.

Definition 4.13. A function $\varepsilon(n)$: **N** \rightarrow **R** is said to be a negligible in *n* if its inverse $1/\varepsilon(n)$ is a nonpolynomially bounded quantity.

Polynomial-time Indistinguishability

Definition 4.14. Let *S* be a set and *E* and *E*' be subsets of *S*. A distinguisher \mathcal{D} is a probabilistic algorithm, which makes use of ℓ elements $a \in S$ where $\ell \leq k$ and which halts in time polynomial in *k* with output in {0,1}. \mathcal{D} satisfies $\mathcal{D}(a,E) = 1$ if $a \in E$, and $\mathcal{D}(a,E') = 1$ if $a \in E'$. Then we say that \mathcal{D} distinguishes *E*, *E*' with advantage Adv(\mathcal{D}) > 0, if Adv(\mathcal{D}) = $|Prob[\mathcal{D}(a,E) = 1] - Prob[\mathcal{D}(a,E') = 1]| > 0$. Definition 4.15. Let sets *E* and *E*' and security parameter *k* be as defined in Definition 4.14. Then *E*, *E*' are said to be polynomially indistiguishable if there exists no

distinguisher for *E*, *E*' for which $Adv(\mathcal{D}) > 0$ is non-

negligible in k for sufficiently large k.

Example: Prime_Gen(k)

Algorithm 4.7: Random *k*-bit Probabilistic Prime Generation INPUT: *k*: a positive integer (input to be written to have size *k*) OUTPUT: a *k*-bit random prime

Prime_Gen(k)

- *1.* $p \in_{\mathrm{U}}(2^{k-1}, 2^k-1]$ with *p* odd;
- 2. if Prime_Test(*p*) = NO, return (Prime_Gen(*k*));
- 3. Return (p)

Here we make use of Prime_Test (*p*) which is \mathcal{PP} (Monte Carlo) with $\varepsilon = 1$ and $\delta = 2^{-k}$. E.g., Solovay-Strassen repeated *k* times.

