T-79.5502 Advanced Course in Cryptology Exam May 11, 2006

- 1. (6 pts) Differentiate and relate the following concepts:
 - (a) Turing computable problem,
 - (b) intractable problem,
 - (c) deterministic polynomial time algorithm,
 - (d) efficient algorithm,
 - (e) practically efficient algorithm, and
 - (f) negligible quantity.
- 2. (6 pts) Let us denote by $PO_{N,e}$ the RSA parity oracle, which for given input $m^e \pmod{N}$ returns $m \mod 2$. Give an outline of a decryption algorithm for RSA, which with input $m^e \pmod{N}$ makes $\lceil \log_2 N \rceil$ calls to $PO_{N,e}$ and then returns m.
- 3. (a) (3 pts) State the Decisional Diffie-Hellman (DDH) Assumption.
 - (b) (3 pts) Describe an efficient reduction from an IND-CPA attacker on ElGamal encryption to an attacker on DDH.
- 4. (6 pts) Assume that there are two disjoint worlds ExP_0 and ExP_1 . Bob's task is to distinguish between the two worlds. Bob is given a sample σ , which is drawn from ExP_0 with probability 1/2 and from ExP_1 with probability 1/2. Bob has a friend Alice, who with input σ guesses a bit $B(\sigma)$. Alice returns $B(\sigma) = 0$ with probability p in case σ is drawn from ExP_0 . In case σ is drawn from ExP_1 Alice is completely helpless, that is, cannot do any better than randomly guess the value of the bit $B(\sigma)$.

Bob's algorithm is as follows. Let $\sigma \in \text{Exp}_b$ be given to Bob. Bob forwards σ to Alice, who then returns $B(\sigma)$. Bob guesses $b = B(\sigma)$.

Determine the probability that Bob's guess is correct. Show that this probability is different from 1/2 if and only if $p \neq 1/2$.