T-79.5502 Advanced Course in Cryptology

Exam
May 11, 2006

1. (6 pts) Differentiate and relate the following concepts:
(a) Turing computable problem,
(b) intractable problem,
(c) deterministic polynomial time algorithm,
(d) efficient algorithm,
(e) practically efficient algorithm, and
(f) negligible quantity.
2. (6 pts) Let us denote by $P O_{N, e}$ the RSA parity oracle, which for given input $m^{e}(\bmod$ N) returns $m \bmod 2$. Give an outline of a decryption algorithm for RSA, which with input $m^{e}(\bmod N)$ makes $\left\lceil\log _{2} N\right\rceil$ calls to $P O_{N, e}$ and then returns m.
3. (a) (3 pts) State the Decisional Diffie-Hellman (DDH) Assumption.
(b) (3 pts) Describe an efficient reduction from an IND-CPA attacker on ElGamal encryption to an attacker on DDH.
4. (6 pts) Assume that there are two disjoint worlds ExP_{0} and ExP_{1}. Bob's task is to distinguish between the two worlds. Bob is given a sample σ, which is drawn from ExP_{0} with probability $1 / 2$ and from ExP_{1} with probability $1 / 2$. Bob has a friend Alice, who with input σ guesses a bit $B(\sigma)$. Alice returns $B(\sigma)=0$ with probability p in case σ is drawn from ExP_{0}. In case σ is drawn from ExP_{1} Alice is completely helpless, that is, cannot do any better than randomly guess the value of the bit $B(\sigma)$.
Bob's algorithm is as follows. Let $\sigma \in \operatorname{Exp}_{b}$ be given to Bob. Bob forwards σ to Alice, who then returns $B(\sigma)$. Bob guesses $b=B(\sigma)$.
Determine the probability that Bob's guess is correct. Show that this probability is different from $1 / 2$ if and only if $p \neq 1 / 2$.
