T-79.5501 Cryptology

First midterm exam
May 7th, 2007
SOLUTIONS

1. We add 1 to each side of the equation to obtain $(x-5)^{2}=1(\bmod n)$. Hence we have to solve equation $y^{2}=1(\bmod n)$, where $y=x-5$. The trivial solutions are $y= \pm 1(\bmod n)$ that is $x=6$ and $x=4$. A non-trivial solution is given by the system

$$
\left\{\begin{array}{l}
y=1 \quad(\bmod 17) \\
y=-1 \quad(\bmod 19)
\end{array}\right.
$$

We will use the CRT to solve the system. We get $m_{1}=17, m_{2}=19, M_{1}=19, M_{2}=$ $17, y_{1}=M_{1}^{-1}=-8(\bmod 17)$ and $y_{2}=M_{2}^{-1}=9(\bmod 19)$. The solution is then $y=-19 * 8-17 * 9=305(\bmod n)$ from which we get that $x=310$. The last solution is $y=n-305=18$ from which $x=23$.
2. (a) Let us calculate

$$
\begin{aligned}
\pi_{S}\left(w+x^{2}\right) & =\left(w+x^{2}\right)^{3}=w^{3}+w^{2} x^{2}+w x^{4}+x^{6} \\
& =\pi_{S}(w)+w^{2} x^{2}+w x(x+1)+(x+1)^{2} \\
& =\pi_{S}(w)+w^{2} x^{2}+w\left(x^{2}+x\right)+x^{2}+1
\end{aligned}
$$

and $\pi_{S}\left(w+a^{\prime}\right)+\pi_{S}(w)=w^{2} x^{2}+w\left(x^{2}+x\right)+x^{2}+1$ for all w.
(b) From part a) we see that $b^{\prime}=\pi_{S}(w)+\pi_{S}\left(w+a^{\prime}\right)=x^{2} w^{2}+\left(x^{2}+x\right) w+x^{2}+1$.

Hence, we get the following table:

w	b^{\prime}
0	$x^{2}+1$
1	$x^{2}+x+1$
x	x^{2}
$x+1$	$x^{2}+x$
x^{2}	$x^{2}+1$
$x^{2}+1$	$x^{2}+x+1$
$x^{2}+x$	x^{2}
$x^{2}+x+1$	$x^{2}+x$

The row of $N\left(a^{\prime}, b^{\prime}\right)$ with $a^{\prime}=x^{2}$ is

b^{\prime}	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
$a^{\prime}=x^{2}$	0	0	0	0	2	2	2	2

3. First we calculate $\phi(n)=4 * 210=840$. Then $a=b^{-1}=611(\bmod \phi(n))$ can be calculated by Euclidean Algorithm. Now $611=2^{9}+2^{6}+2^{5}+2^{1}+2^{0}$ and we use Square And Multiply to calculate $x=y^{a}(\bmod n)$. We have that $y^{2}=481, y^{4}=316$ etc. The other necessary powers are $y^{512}=1016, y^{64}=561$ and $y^{32}=136$ such that $y^{a}=1016 * 561 * 136 * 481 * 314=924=x$.
4. We use Shanks' algorithm with $\alpha=202, G=<\alpha>$ in $\mathbb{Z}_{2005}, n=16$, and $\beta=133$. Then $m=\lceil\sqrt{16}\rceil=4$, and $\alpha^{m}=202^{4}=381(\bmod 2005)$. The first list L_{1} is then as follows:

j	$381^{j} \bmod 2005$
0	1
1	381
2	801
3	421

To compute the second list we compute first $202^{-1} \bmod 2005=268$. Then

i	$133 \cdot 268^{i} \bmod 2005$
0	133
1	1599
2	772
3	381

from where we see that the solution is $j=1$ and $i=3$ from where $x=1 * 4+3=7$.

