T-79.5501 Cryptology First midterm exam May 7th, 2007 SOLUTIONS

1. We add 1 to each side of the equation to obtain $(x - 5)^2 = 1 \pmod{n}$. Hence we have to solve equation $y^2 = 1 \pmod{n}$, where y = x - 5. The trivial solutions are $y = \pm 1 \pmod{n}$ that is x = 6 and x = 4. A non-trivial solution is given by the system

$$\begin{cases} y = 1 \pmod{17} \\ y = -1 \pmod{19}. \end{cases}$$

We will use the CRT to solve the system. We get $m_1 = 17, m_2 = 19, M_1 = 19, M_2 = 17, y_1 = M_1^{-1} = -8 \pmod{17}$ and $y_2 = M_2^{-1} = 9 \pmod{19}$. The solution is then $y = -19 * 8 - 17 * 9 = 305 \pmod{n}$ from which we get that x = 310. The last solution is y = n - 305 = 18 from which x = 23.

2. (a) Let us calculate

$$\pi_S(w+x^2) = (w+x^2)^3 = w^3 + w^2 x^2 + w x^4 + x^6$$

= $\pi_S(w) + w^2 x^2 + w x (x+1) + (x+1)^2$
= $\pi_S(w) + w^2 x^2 + w (x^2+x) + x^2 + 1$

and $\pi_S(w+a') + \pi_S(w) = w^2 x^2 + w(x^2+x) + x^2 + 1$ for all w.

(b) From part a) we see that $b' = \pi_S(w) + \pi_S(w+a') = x^2w^2 + (x^2+x)w + x^2 + 1$. Hence, we get the following table:

w	b'				
0	$x^2 + 1$				
1	$x^2 + x + 1$				
x	x^2				
x + 1	$x^2 + x$				
x^2	$x^2 + 1$				
$x^2 + 1$	$x^2 + x + 1$				
$x^2 + x$	x^2				
$x^2 + x + 1$	$x^2 + x$				
The row of $N(a', b')$ with $a' = x^2$ is					
b' = 0	$1 \ x \ x +$	$1 x^2$	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
$a' = x^2 0$	0 0 0	2	2	2	2

3. First we calculate $\phi(n) = 4 * 210 = 840$. Then $a = b^{-1} = 611 \pmod{\phi(n)}$ can be calculated by Euclidean Algorithm. Now $611 = 2^9 + 2^6 + 2^5 + 2^1 + 2^0$ and we use Square And Multiply to calculate $x = y^a \pmod{n}$. We have that $y^2 = 481, y^4 = 316$ etc. The other necessary powers are $y^{512} = 1016, y^{64} = 561$ and $y^{32} = 136$ such that $y^a = 1016 * 561 * 136 * 481 * 314 = 924 = x$.

4. We use Shanks' algorithm with $\alpha = 202$, $G = \langle \alpha \rangle$ in \mathbb{Z}_{2005} , n = 16, and $\beta = 133$. Then $m = \lceil \sqrt{16} \rceil = 4$, and $\alpha^m = 202^4 = 381 \pmod{2005}$. The first list L_1 is then as follows:

j	$381^j \mod 2005$
0	1
1	381
2	801
3	421

To compute the second list we compute first $202^{-1} \mod 2005 = 268$. Then

i	$133 \cdot 268^i \mod 2005$
0	133
1	1599
2	772
3	381

from where we see that the solution is j = 1 and i = 3 from where x = 1 * 4 + 3 = 7.