T-79.5501 Cryptology

First midterm exam, solutions
March 3rd, 2007

1. Let us first calculate the entropy of one block. There can be 0,1 or 2 ones in a block (and 5, 4 or 3 zeros, respectively). Hence, there are

$$
\binom{5}{0}+\binom{5}{1}+\binom{5}{2}=16
$$

different blocks each of which can be chosen equiprobably. Hence entropy of one block is $\log _{2} 16=4$ and the entropy of 20 equiprobable blocks is $20 * 4=80$. The maximum entropy of a 100 bit string is $100>80$..
2. The first output sequence is $11111 \ldots$ of period length 1 , and it can also be generated using an LFSR of length 1 with polynomial $x+1$ which is a divisor of polynomial $f(x)=x^{3}+x^{2}+x+1=(x+1)^{3}$. The second output sequence is 01 $0111100010011 \mid 010 \ldots$ of period length 15 . It follows that the sum sequence can be generated with an LFSR of length 5 with feedback polynomial $\operatorname{lcm}(x+1, g(x))=(x+1)\left(x^{4}+x+1\right)=x^{5}+x^{4}+x^{2}+1$. This is the shortest length, because the sum sequence has 4 consecutive zeros. The feedback polynomial of degree 5 is uniquely determined as soon as at least 10 terms of the sequence are given.
3. From the given plaintext and ciphertext we get two equations for R_{1}

$$
\left\{\begin{aligned}
R_{1} & =100+f(001+K)(\text { encrypting over the first round }) \\
R_{1}=L_{2} & =100+f\left(110+K^{3}\right)(\text { decrypting over the third round })
\end{aligned}\right.
$$

It follows that

$$
\begin{equation*}
f(001+K)=f\left(110+K^{3}\right) \tag{1}
\end{equation*}
$$

Since f is a bijection in $\mathbb{F}=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$ it follows that (1) can hold if and only if

$$
001+K=110+K^{3}
$$

which is equivalent to

$$
\begin{equation*}
K+K^{3}=111 \tag{2}
\end{equation*}
$$

To find a solution $K \in \mathbb{F}$, we compute the values of $z+z^{3}$ for all $z \in \mathbb{F}$:

z	z^{3}	$z+z^{3}$
000	000	000
001	001	000
010	011	001
011	100	111
100	101	001
101	110	011
111	010	101

It follows that there is a unique solution $K=011$ that satisfies equation (2).
4. We denote by $\varepsilon_{i j}$ the bias of $\mathbf{X}_{i} \oplus \mathbf{X}_{j}$. By Piling Up Lemma we have $\varepsilon_{12}=2 \varepsilon_{1} \varepsilon_{2}$ and $\varepsilon_{23}=2 \varepsilon_{2} \varepsilon_{3}$. The assumption is that the random variables $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ and $\mathbf{X}_{2} \oplus \mathbf{X}_{3}$ are independent. Then using the Piling Up Lemma again we have that the bias of $\mathbf{X}_{1} \oplus \mathbf{X}_{2} \oplus\left(\mathbf{X}_{2} \oplus \mathbf{X}_{3}\right)$ is equal to $2 \varepsilon_{12} \varepsilon_{23}=8 \varepsilon_{1} \varepsilon_{3} \varepsilon_{2}^{2}$. But $\left(\mathbf{X}_{1} \oplus \mathbf{X}_{2}\right) \oplus\left(\mathbf{X}_{2} \oplus \mathbf{X}_{3}\right)=$ $\mathbf{X}_{1} \oplus \mathbf{X}_{3}$ which is known to have the bias equal to $\varepsilon_{13}=2 \varepsilon_{1} \varepsilon_{3}$. We get the equation

$$
8 \varepsilon_{1} \varepsilon_{3} \varepsilon_{2}^{2}=2 \varepsilon_{1} \varepsilon_{3} .
$$

This equation holds if and only if either $\varepsilon_{2}= \pm \frac{1}{2}$ or $\varepsilon_{1}=0$ or $\varepsilon_{3}=0$.

